دورية أكاديمية

Purification, Identification, and Characterization of a Glycoside Hydrolase Family 11-Xylanase with High Activity from Aspergillus niger VTCC 017.

التفاصيل البيبلوغرافية
العنوان: Purification, Identification, and Characterization of a Glycoside Hydrolase Family 11-Xylanase with High Activity from Aspergillus niger VTCC 017.
المؤلفون: Dao TMA; Department of Biochemistry, Hanoi University of Pharmacy, Hanoi, Vietnam., Cuong NT; Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Caugiay District, 10600, Hanoi, Vietnam., Nguyen TT; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam., Nguyen NPD; Tay Nguyen University, Buon Ma Thuot, Dak Lak, Vietnam., Tuyen DT; Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Caugiay District, 10600, Hanoi, Vietnam. dttuyen@ibt.ac.vn.; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam. dttuyen@ibt.ac.vn.
المصدر: Molecular biotechnology [Mol Biotechnol] 2022 Feb; Vol. 64 (2), pp. 187-198. Date of Electronic Publication: 2021 Sep 27.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Switzerland NLM ID: 9423533 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-0305 (Electronic) Linking ISSN: 10736085 NLM ISO Abbreviation: Mol Biotechnol Subsets: MEDLINE
أسماء مطبوعة: Publication: [Cham] : Springer
Original Publication: Totowa, NJ : Humana Press, c1994-
مواضيع طبية MeSH: Aspergillus niger/*enzymology , Fungal Proteins/*isolation & purification , Xylosidases/*isolation & purification , Xylosidases/*metabolism, Detergents/chemistry ; Dextrans ; Electrophoresis, Polyacrylamide Gel ; Enzyme Stability ; Filtration/methods ; Fungal Proteins/chemistry ; Fungal Proteins/metabolism ; Hydrogen-Ion Concentration ; Kinetics ; Metals/chemistry ; Solvents/chemistry ; Temperature ; Xylosidases/chemistry
مستخلص: Xylanases (EC 3.2.1.8) have been considered as a potential green solution for the sustainable development of a wide range of industries including pulp and paper, food and beverages, animal feed, pharmaceuticals, and biofuels because they are the key enzymes that degrade the xylosidic linkages of xylan, the major component of the second most abundant raw material worldwide. Therefore, there is a critical need for the industrialized xylanases which must have high specific activity, be tolerant to organic solvent or detergent and be active during a wide range of conditions, such as high temperature and pH. In this study, an extracellular xylanase was purified from the culture broth of Aspergillus niger VTCC 017 for primary structure determination and properties characterization. The successive steps of purification comprised centrifugation, Sephadex G-100 filtration, and DEAE-Sephadex chromatography. The purified xylanase (specific activity reached 6596.79 UI/mg protein) was a monomer with a molecular weight of 37 kDa estimating from SDS electrophoresis. The results of LC/MS suggested that the purified protein is indeed an endo-1,4-β-D-xylanase. The purified xylanase showed the optimal temperature of 55 °C, and pH 6.5 with a stable xylanolytic activity within the temperature range of 45-50 °C, and within the pH range of 5.0-8.0. Most divalent metal cations including Zn 2+ , Fe 2+ , Mg 2+ , Cu 2+ , Mn 2+ showed some inhibition of xylanase activity while the monovalent metal cations such as K + and Ag + exhibited slight stimulating effects on the enzyme activity. The introduction of 10-30% different organic solvents (n-butanol, acetone, isopropanol) and several detergents (Triton X-100, Tween 20, and SDS) slightly reduced the enzyme activity. Moreover, the purified xylanase seemed to be tolerant to methanol and ethanol and was even stimulated by Tween 80. Overall, with these distinctive properties, the putative xylanase could be a successful candidate for numerous industrial uses.
(© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Alfredsson, E. (2014). Prerequisites for a green structural transformation of swedish industry—Synthesis report. Growth analysis, Swedish agency for growth policy analysis.
Rodrik, D. (2014). Green industrial policy. Oxford Review of Economic Policy, 30(3), 469–491. (PMID: 10.1093/oxrep/gru025)
Singh, R., Kumar, M., Mittal, A., & Mehta, P. K. (2016). Microbial enzymes: industrial progress in 21st century. 3 Biotech, 6(2), 174. (PMID: 10.1007/s13205-016-0485-8)
Bajaj, P., & Mahajan, R. (2019). Cellulase and xylanase synergism in industrial biotechnology. Applied Microbiology and Biotechnology, 103, 8711–8724. (PMID: 10.1007/s00253-019-10146-0)
Sridevi, A., Ramanjaneyulu, G., & Suvarnalatha, D. P. (2017). Biobleaching of paper pulp with xylanase produced by Trichoderma asperellum. 3 Biotech, 7, 266. (PMID: 10.1007/s13205-017-0898-z)
Adiguzel, G., Faiz, O., Sisecioglu, M., Sari, B., Baltaci, O., Akbulut, S., Genc, B., & Adiguzel, A. (2019). A novel endo-β-1,4-xylanase from Pediococcus acidilactici GC25; purifcation, characterization and application in clarifcation of fruit juices. International Journal of Biological Macromolecules, 129, 571–578. (PMID: 10.1016/j.ijbiomac.2019.02.054)
Queiroz-Brito-Cunha, C. C., Gama, A. R., Cintra, L. C., Bataus, L. A. M., & Ulhoa, C. J. (2018). Improvement of bread making quality by supplementation with a recombinant xylanase produced by Pichia pastoris. PLoS ONE, 13, 1–14. (PMID: 10.1371/journal.pone.0192996)
Bedford, M. R. (2018). The evolution and application of enzymes in the animal feed industry: The role of data interpretation. British Poultry Science, 5(59), 486–493. (PMID: 10.1080/00071668.2018.1484074)
Bhardwaj, N., Kumar, B., & Verma, P. (2019). A detailed overview of xylanases: An emerging biomolecule for current and future prospective. Bioresources and Bioprocessing, 6, 40. (PMID: 10.1186/s40643-019-0276-2)
Guimaraes, N. C. A., Sorgatto, M., Peixoto-Nogueira, S. C., Betini, J. H. A., Zanoelo, F. F., Marques, M. R., Polizeli, M. T., & Giannesi, G. C. (2013). Bioprocess and biotechnology: Effect of xylanase from Aspergillus niger and Aspergillus flavus on pulp biobleaching and enzyme production using agroindustrial residues as substract. Springer Plus, 2, 380. (PMID: 10.1186/2193-1801-2-380)
He, H., Qin, Y., Li, N., Chen, G., & Liang, Z. (2015). Purification and characterization of a thermostable hypothetical xylanase from Aspergillus oryzae HML366. Applied Biochemistry and Biotechnology, 175, 3148–3161. (PMID: 10.1007/s12010-014-1352-x)
Li, Y., Zhang, B., Chen, X., Chen, Y., & Cao, Y. (2009). Improvement of Aspergillus sulphureus endo-beta-1,4-xylanase expression in Pichia pastoris by codon optimization and analysis of the enzymic characterization. Applied Biochemistry and Biotechnology, 160, 1321–1331. (PMID: 10.1007/s12010-009-8621-0)
Yang, W., Yang, Y., Zhang, L., Xu, H., Guo, X., Yang, X., Dong, B., & Cao, Y. (2017). Improved thermostability of an acidic xylanase from Aspergillus sulphureus by combined disulphide bridge introduction and proline residue substitution. Scientific Reports, 7, 1587. (PMID: 10.1038/s41598-017-01758-5)
Bailey, M. J., Biely, P., & Poutanen, K. (1992). Interlaboratory testing of methods for assay of xylanase activity. Journal of Biotechnology, 23(3), 257–270. (PMID: 10.1016/0168-1656(92)90074-J)
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry, 31, 426–428. (PMID: 10.1021/ac60147a030)
Laemmli, U. K. (1970). Cleavage of structure proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685. (PMID: 10.1038/227680a0)
Bradford, M. N. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. (PMID: 10.1016/0003-2697(76)90527-3)
Bringans, S., Eriksen, S., Kendrick, T., Gopalakrishnakone, P., Livk, A., Lock, R., & Lipscombe, R. (2008). Proteomic analysis of the venom of Heterometrus longimanus (Asian black scorpion). Proteomics, 8, 1081–1096. (PMID: 10.1002/pmic.200700948)
Do, T. T., Quyen, D. T., & Nguyen, V. T. (2009). Optimal of some culture conditions for Aspergillus niger VTCC-F-017 and Aspergillus oryzae VTCC-F-187 producing xylanase. In The analytica Vietnam conference 2009 (pp. 294–301).
Silva, P. O., Alencar-Guimaraes, N. C., Serpa, J. D. M., Masui, D. C., Marchetti, C. R., Verbisck, N. V., Zanoelo, F. F., Ruller, R., & Giannesi, G. (2019). Application of an endo-xylanase from Aspergillus japonicus in the fruit juice clarification and fruit peel waste hydrolysis. Biocatalysis and Agriculture Biotechnology, 21, 101312. (PMID: 10.1016/j.bcab.2019.101312)
Miao, Y., Li, J., Xiao, Z., Shen, Q., & Zhang, R. 2015. Characterization and identification of the xylanolytic enzymes from Aspergillus fumigatus Z5. BMC Microbiology, 15.
Amir, A., Arif, M., & Pande, V. (2013). Purification and characterization of xylanase from Aspergillus fumigatus isolated from soil. African Journal of Biotechnology, 12(20), 3049–3057.
Nair, S. G., Sindhu, R., & Shashidhar, S. (2008). Purification and biochemical characterization of two xylanases from Aspergillus sydowii SBS 45. Applied Biochemistry Biotechnology, 149, 229–243. (PMID: 10.1007/s12010-007-8108-9)
Do, T. T., & Quyen, D. T. (2010). Purification and properties of a thermoactive xylanase from Aspergillus oryzae DSM1863. Middle East Journal of Scientific Research, 6(4), 392–397.
Krisana, A., Rutchadaporn, S., Jarupan, G., Lily, E., Sutipa, T., & Kanyawim, K. (2005). Endo-1,4-β-xylanase B from Aspergillus cf. niger BCC14405 isolated in Thailand: Purification, characterization and gene isolation. Journal of Biochemistry and Molecular Biology, 38, 17–23. (PMID: 15715941)
Camacho, N. A., & Aguilar, O. G. (2003). Production, purification, and characterization of a low-molecular-mass xylanase from Aspergillus sp. and its application in baking. Applied Microbiology and Biotechnology, 104, 159–172.
Fialho, M., & Carmona, E. C. (2004). Purification and characterization of xylanases from Aspergillus giganteus. Folia Microbiological (Praha), 49, 13–18. (PMID: 10.1007/BF02931639)
Lu, F., Lu, M., & Lu, Z. (2008). Purification and characterization of xylanase from Aspergillus ficuum AF-98. Bioresource Technology, 99, 5938–5941. (PMID: 10.1016/j.biortech.2007.10.051)
Fernandez-Espinar, M., Pinaga, F., Graaff, L., Visser, J., Ramon, D., & Vallds, S. (1994). Purification, characterization and regulation of the synthesis of an Aspergillus nidulans acidic xylanase. Applied Microbiology and Biotechnology, 42, 555–562. (PMID: 10.1007/BF00173920)
Paës, G., Berrin, J. G., & Beaugrand, J. (2012). GH11 xylanases: Structure/function/properties relationships and applications. Biotechnology Advances, 30(3), 564–592. (PMID: 10.1016/j.biotechadv.2011.10.003)
Ho, H. L. (2017). Aspergillus xylanases. Journal of Advances in Microbiology, 5, 1–12. (PMID: 10.9734/JAMB/2017/33936)
Han, N., Miao, H., Ding, J., Li, J., Mu, Y., Zhou, J., & Huang, Z. (2017). Improving the thermostability of a fungal GH11 xylanase via site-directed mutagenesis guided by sequence and structural analysis. Biotechnology for Biofuels, 10, 133. (PMID: 10.1186/s13068-017-0824-y)
Saleem, A., Waris, S., Ahmed, T., & Tabassum, R. (2020). Biochemical characterization and molecular docking of cloned xylanase gene from Bacillus subtilis RTS expressed in E. coli. International Journal of Biological Macromolecules, 168(2021), 310–321. (PMID: 33309670)
Heinen, P. R., Bauermeister, A., Ribeiro, L. F., Messias, J. M., Almeida, P. Z., Moraes, L. A. B., Vargas-Rechia, C. G., Oliveira, A. H. C., Ward, R. J., Filho, E. X. F., Kadowaki, M. K., Jorge, J. A., & Polizeli, M. L. T. M. (2018). GH11 xylanase from Aspergillus tamarii Kita: Purification by one-step chromatography and xylooligosaccharides hydrolysis monitored in real-time by mass spectrometry. International Journal of Biological Macromolecules, 108, 291–299. (PMID: 10.1016/j.ijbiomac.2017.11.150)
Chen, Z., Zaky, A., Liu, Y., Chen, Y., Liu, L., Li, S., & Jia, Y. (2019). Purification and characterization of a new xylanase with excellent stability from Aspergillus flavus and its application in hydrolyzing pretreated corncobs. Protein Expression and Purification, 154, 91–97. (PMID: 10.1016/j.pep.2018.10.006)
Mamo, G., Thunnissen, M., Hatti-Kaul, R., & Mattiasson, B. (2009). An alkaline active xylanase: Insights into mechanisms of high pH catalytic adaptation. Biochimie, 91, 1187–1196. (PMID: 10.1016/j.biochi.2009.06.017)
Boucherba, N., Gagaoua, M., Bouanane-Darenfed, A., Bouiche, C., Bouacem, K., Kerbous, M. Y., Maafa, Y., & Benallaoua, S. (2017). Biochemical properties of a new thermo-and solvent-stable xylanase recovered using three phase partitioning from the extract of Bacillus oceanisediminis strain SJ3. Bioresources and Bioprocessing, 4, 29. (PMID: 10.1186/s40643-017-0161-9)
Do, T. T., Quyen, D. T., & Dam, T. H. (2012). Purification and characterization of an acid- stable and organic solvent-tolerant xylanase from Aspergillus awamori VTCC-F312. ScienceAsia, 38(2012), 157–165.
Gaur, R., Tiwari, S., Rai, P., & Srivastava, V. (2015). Isolation, production, and characterization of thermotolerant xylanase from solvent tolerant Bacillus vallismortis RSPP-15. International Journal of Polymer Science, 2015, 1–10. (PMID: 10.1155/2015/986324)
Sanghvi, G., Jivrajani, M., Patel, N., Jivrajani, H., Bhaskara, G. B., & Patel, S. (2015). Purification and characterization of haloalkaline, organic solvent stable xylanase from newly isolated halophilic bacterium-OKH. International Scholarly Research Notices.
Shu, N., Zhou, T., & Hovmöller, S. (2008). Prediction of zinc-binding sites in proteins from sequence. Bioinformatics, 24, 775–782. (PMID: 10.1093/bioinformatics/btm618)
معلومات مُعتمدة: 106.02-2018.347 Nafosted
فهرسة مساهمة: Keywords: Aspergillus niger VTCC 017; High-active GH11 xylanase; Industrial enzyme; Purification and characterization
المشرفين على المادة: 0 (Detergents)
0 (Dextrans)
0 (Fungal Proteins)
0 (Metals)
0 (Solvents)
9014-76-0 (sephadex)
EC 3.2.1.- (Xylosidases)
تواريخ الأحداث: Date Created: 20210928 Date Completed: 20220325 Latest Revision: 20220325
رمز التحديث: 20231215
DOI: 10.1007/s12033-021-00395-8
PMID: 34580814
قاعدة البيانات: MEDLINE
الوصف
تدمد:1559-0305
DOI:10.1007/s12033-021-00395-8