دورية أكاديمية

Conformational flexibility of EptA driven by an interdomain helix provides insights for enzyme-substrate recognition.

التفاصيل البيبلوغرافية
العنوان: Conformational flexibility of EptA driven by an interdomain helix provides insights for enzyme-substrate recognition.
المؤلفون: Anandan A; School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth 6009, Australia., Dunstan NW; School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth 6009, Australia., Ryan TM; Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia., Mertens HDT; European Molecular Biology Laboratory, Hamburg Unit, DESY, Notkestrasse 85, 22607 Hamburg, Germany., Lim KYL; The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia., Evans GL; School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth 6009, Australia., Kahler CM; The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia., Vrielink A; School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth 6009, Australia.
المصدر: IUCrJ [IUCrJ] 2021 Jul 15; Vol. 8 (Pt 5), pp. 732-746. Date of Electronic Publication: 2021 Jul 15 (Print Publication: 2021).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: International Union of Crystallography Country of Publication: England NLM ID: 101623101 Publication Model: eCollection Cited Medium: Print ISSN: 2052-2525 (Print) Linking ISSN: 20522525 NLM ISO Abbreviation: IUCrJ Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Chester : International Union of Crystallography, [2014]-
مستخلص: Many pathogenic gram-negative bacteria have developed mechanisms to increase resistance to cationic antimicrobial peptides by modifying the lipid A moiety. One modification is the addition of phospho-ethano-lamine to lipid A by the enzyme phospho-ethano-lamine transferase (EptA). Previously we reported the structure of EptA from Neisseria , revealing a two-domain architecture consisting of a periplasmic facing soluble domain and a transmembrane domain, linked together by a bridging helix. Here, the conformational flexibility of EptA in different detergent environments is probed by solution scattering and intrinsic fluorescence-quenching studies. The solution scattering studies reveal the enzyme in a more compact state with the two domains positioned close together in an n -do-decyl-β-d-maltoside micelle environment and an open extended structure in an n -do-decyl-phospho-choline micelle environment. Intrinsic fluorescence quenching studies localize the domain movements to the bridging helix. These results provide important insights into substrate binding and the molecular mechanism of endotoxin modification by EptA.
(© Anandhi Anandan et al. 2021.)
References: Biochemistry. 1986 Apr 22;25(8):2287-92. (PMID: 3011084)
J Appl Crystallogr. 2017 Jun 26;50(Pt 4):1212-1225. (PMID: 28808438)
Infect Immun. 2012 Nov;80(11):4014-26. (PMID: 22949553)
J Comput Chem. 2009 Oct;30(13):2157-64. (PMID: 19229944)
Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9618-23. (PMID: 15210985)
J Bacteriol. 2003 Jun;185(11):3270-7. (PMID: 12754224)
Gene. 1987;61(1):63-74. (PMID: 3327753)
Trends Microbiol. 2002 Apr;10(4):179-86. (PMID: 11912025)
Curr Protein Pept Sci. 2012 Feb;13(1):55-75. (PMID: 22044150)
J Struct Biol. 2010 Jan;169(1):45-53. (PMID: 19723583)
Chem Rev. 2018 Apr 11;118(7):3559-3607. (PMID: 29488756)
Biol Proced Online. 2016 Feb 15;18:4. (PMID: 26880869)
PLoS One. 2015 Apr 22;10(4):e0124373. (PMID: 25902140)
Biopolymers. 2011 Aug;95(8):559-71. (PMID: 21509745)
FEBS Lett. 2015 Sep 14;589(19 Pt A):2570-7. (PMID: 26320411)
J Phys Chem Lett. 2018 Jul 19;9(14):3910-3914. (PMID: 29939747)
Bioconjug Chem. 2012 Sep 19;23(9):1794-801. (PMID: 22794081)
J Am Chem Soc. 2007 May 2;129(17):5656-64. (PMID: 17411046)
J Biol Chem. 2012 Nov 16;287(47):39634-41. (PMID: 23024361)
Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):2218-2223. (PMID: 28193899)
J Struct Biol. 2010 Oct;172(1):128-41. (PMID: 20558299)
Front Microbiol. 2018 Aug 21;9:1922. (PMID: 30186254)
IUCrJ. 2015 Feb 26;2(Pt 2):207-17. (PMID: 25866658)
Crit Rev Microbiol. 2013 May;39(2):180-95. (PMID: 22799636)
J Mol Biol. 2021 May 28;433(11):166888. (PMID: 33631193)
J Phys Chem B. 2007 Nov 1;111(43):12427-38. (PMID: 17924686)
J Clin Microbiol. 1976 Jul;4(1):71-81. (PMID: 182717)
J Mol Biol. 2013 Sep 23;425(18):3389-402. (PMID: 23810904)
Acta Crystallogr D Biol Crystallogr. 2015 Jan 1;71(Pt 1):86-93. (PMID: 25615863)
Nucleic Acids Res. 2012 Jan;40(Database issue):D370-6. (PMID: 21890895)
Biophys J. 2017 Dec 5;113(11):2373-2382. (PMID: 29211991)
J Phys Chem B. 2013 Oct 31;117(43):13588-94. (PMID: 24144436)
Bioinformatics. 2018 Jun 1;34(11):1944-1946. (PMID: 29300836)
J Bacteriol. 2002 May;184(9):2379-88. (PMID: 11948150)
Biochem Biophys Res Commun. 2013 Jul 5;436(3):551-6. (PMID: 23770362)
Int J Antimicrob Agents. 2018 Apr;51(4):586-593. (PMID: 29288722)
Acta Crystallogr D Struct Biol. 2016 Dec 1;72(Pt 12):1254-1266. (PMID: 27917826)
J Appl Crystallogr. 2012 Mar 15;45(Pt 2):342-350. (PMID: 25484842)
Sci Rep. 2018 May 8;8(1):7204. (PMID: 29739979)
فهرسة مساهمة: Keywords: EptA; conformational flexibility; enzyme substrate recognition; phosphoethanolamine transferase; small-angle X-ray scattering; tryptophan fluorescence
تواريخ الأحداث: Date Created: 20210929 Latest Revision: 20231107
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC8420757
DOI: 10.1107/S2052252521005613
PMID: 34584735
قاعدة البيانات: MEDLINE
الوصف
تدمد:2052-2525
DOI:10.1107/S2052252521005613