دورية أكاديمية

Persistence and expansion of cryptic endangered red wolf genomic ancestry along the American Gulf coast.

التفاصيل البيبلوغرافية
العنوان: Persistence and expansion of cryptic endangered red wolf genomic ancestry along the American Gulf coast.
المؤلفون: vonHoldt BM; Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, USA., Brzeski KE; College of Forest Resources and Environment Science, Michigan Technological University, Houghton, Michigan, USA., Aardema ML; Department of Biology, Montclair State University, Montclair, New Jersey, USA.; Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, USA., Schell CJ; Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, USA., Rutledge LY; Biology Department, Trent University, Peterborough, Ontario, Canada., Fain SR; USFWS, Clark R. Bavin National Forensics Laboratory, Ashland, Oregon, USA., Shutt AC; The Canid Project, Louisiana, USA., Linderholm A; Department of Anthropology, Texas A&M University, College Station, Texas, USA., Murphy WJ; Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA.
المصدر: Molecular ecology [Mol Ecol] 2022 Nov; Vol. 31 (21), pp. 5440-5454. Date of Electronic Publication: 2021 Oct 10.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Scientific Publications Country of Publication: England NLM ID: 9214478 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-294X (Electronic) Linking ISSN: 09621083 NLM ISO Abbreviation: Mol Ecol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford, UK : Blackwell Scientific Publications, c1992-
مواضيع طبية MeSH: Wolves*/genetics , Coyotes*/genetics , Canidae*, Animals ; United States ; Hybridization, Genetic ; Genome/genetics ; Genomics
مستخلص: Admixture and introgression play a critical role in adaptation and genetic rescue that has only recently gained a deeper appreciation. Here, we explored the geographical and genomic landscape of cryptic ancestry of the endangered red wolf that persists within the genome of a ubiquitous sister taxon, the coyote, all while the red wolf has been extinct in the wild since the early 1980s. We assessed admixture across 120,621 single nucleotiode polymorphism (SNP) loci genotyped in 293 canid genomes. We found support for increased red wolf ancestry along a west-to-east gradient across the southern United States associated with historical admixture in the past 100 years. Southwestern Louisiana and southeastern Texas, the geographical zone where the last red wolves were known prior to extinction in the wild, contained the highest and oldest levels of red wolf ancestry. Further, given the paucity of inferences based on chromosome types, we compared patterns of ancestry on the X chromosome and autosomes. We additionally aimed to explore the relationship between admixture timing and recombination rate variation to investigate gene flow events. We found that X-linked regions of low recombination rates were depleted of introgression, relative to the autosomes, consistent with the large X effect and enrichment with loci involved in maintaining reproductive isolation. Recombination rate was positively correlated with red wolf ancestry across coyote genomes, consistent with theoretical predictions. The geographical and genomic extent of cryptic red wolf ancestry can provide novel genomic resources for recovery plans targeting the conservation of the endangered red wolf.
(© 2021 John Wiley & Sons Ltd.)
References: Abraham, G., & Inouye, M. (2014). Fast principal component analysis of large-scale genome-wide data. PLoS One, 9, e93766. https://doi.org/10.1371/journal.pone.0093766.
Albers, G., Edwards, J. W., Rogers, R. E., & Mastro, L. L. (2016). Natality of yearling coyotes in West Virginia. Journal of Fish and Wildlife Management, 7(1), 192-197. https://doi.org/10.3996/072015-JFWM-063.
Alexander, D., Novembre, J., & Lange, K. (2009). Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 19(9), 1655-1664. https://doi.org/10.1101/gr.094052.109.
Ali, O. A., O’Rourke, S. M., Amish, S. J., Meek, M. H., Luikart, G., Jeffres, C., & Miller, M. R. (2015). RAD Capture (Rapture): flexible and efficient sequence-based genotyping. Genetics, 202, 389-400. https://doi.org/10.1534/genetics.115.183665.
Amador, C., Fernández, J., & Meuwissen, T. H. E. (2013). Advantages of using molecular coancestry in the removal of introgressed genetic material. Genetics Selection Evolution, 45, 13. https://doi.org/10.1186/1297-9686-45-13.
Amador, C., Hayes, B. J., & Daetwyler, H. D. (2014). Genomic selection for recovery of original genetic background from hybrids of endangered and common breeds. Evolutionary Applications, 7, 227-237. https://doi.org/10.1111/eva.12113.
Barbato, M., Hailer, F., Orozco-terWengel, P., Kijas, J., Mereu, P., Cabras, P., Mazza, R., Pirastru, M., & Bruford, B. W. (2017). Genomic signatures of adaptive introgression from European mouflon into domestic sheep. Scientific Reports, 7, 7623. https://doi.org/10.1038/s41598-017-07382-7.
Barton, N. H. (1979). Gene flow past a cline. Heredity, 43, 333-339. https://doi.org/10.1038/hdy.979.86.
Barton, N., & Bengtsson, B. O. (1986). The barrier to genetic exchange between hybridizing populations. Heredity, 57, 357-376. https://doi.org/10.1038/hdy.1986.135.
Barton, N. H., & Hewitt, G. M. (1985). Analysis of hybrid zones. Annual Review of Ecology and Systematics, 16, 113-148. https://doi.org/10.1146/annurev.es.16.110185.000553.
Bierne, N., Lenormand, T., Bonhomme, F., & David, P. (2002). Deleterious mutations in a hybrid zone: can mutational load decrease the barrier to gene flow? Genetical Research, 80(3), 194-204. https://doi.org/10.1017/s001667230200592x.
Bierne, N., Welch, J., Loire, E., Bonhomme, F., & David, P. (2011). The coupling hypothesis: why genome scans may fail to map local adaptation genes. Molecular Ecology, 20, 2044-2072. https://doi.org/10.1111/j.1365-294X.2011.05080.x.
Brzeski, K. E., Rabon, D. R. Jr, Chamberlain, M. J., Waits, L. P., & Taylor, S. S. (2014). Inbreeding and inbreeding depression in endangered red wolves (Canis rufus). Molecular Ecology, 23(17), 4241-4255. https://doi.org/10.1111/mec.12871.
Burgarella, C., Barnaud, A., Kane, N. A., Jankowski, F., Scarcelli, N., Billot, C., Vigouroux, Y., & Berthouly-Salazar, C. (2019). Adaptive introgression: An untapped evolutionary mechanism for crop adaptation. Frontiers in Plant Science, 10, 4. https://doi.org/10.3389/fpls.2019.00004.
Carley, C. J. 1975. Activities and findings of the Red Wolf Recovery Program from late 1973 to July 1, 1975. U.S. Fish and Wildlife Service. 215 pp. Albuquerque, New Mexico.
Carneiro, M., Blanco-Anguilar, J. A., Villafuerte, R., Ferrand, N., & Nachman, M. W. (2010). Speciation in the European rabbit (Oryctolagus cuniculus): Islands of differentiation on the X chromosome and autosomes. Evolution, 64(12), 3443-3460. https://doi.org/10.1111/j.1558-5676.2010.01092.x.
Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A., & Cresko, W. A. (2013). Stacks: an analysis tool set for population genomics. Molecular Ecology, 22(11), 3124-3140. https://doi.org/10.1111/mec.12354.
Chang, C. C., Chow, C. C., Tellier, L. C. A. M., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015). Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience, 4, https://doi.org/10.1186/s13742-015-0047-8.
Coyne, J. A., & Orr, H. A. (1989). Two rules of speciation. In D. Otte, & J. A. Endler (Eds.), Speciation and its consequences (pp. 180-207). Sinauer Associates.
Curtis-Robles, R., Lewis, B. C., & Hamer, S. A. (2016). High Trypanosoma cruzi infection prevalence associated with minimal cardiac pathology among wild carnivores in central Texas. International Journal for Parasitology: Parasites and Wildlife, 5(2), 117-123. https://doi.org/10.1016/j.ijppaw.2016.04.001.
Danecek, P., Auton, A., Abecasis, G., Albers, C. A., DePristo, M. A., Handsaker, R., Lunter, G., Marth, G., Sherry, S. T., McVean, G., & Durbin, R. (2011). The variant call format and VCFtools. Bioinformatics, 27(15), 2156-2158. https://doi.org/10.1093/bioinformatics/btr330.
DeCandia, A., Brzeski, K., Heppenheimer, E., Caro, C., Camenisch, G., Wandeler, P., Driscoll, C., & vonHoldt, B. (2019). Urban colonization through multiple genetic lenses: The city-fox phenomenon revisited. Ecology and Evolution, 9(4), 2046-2060. https://doi.org/10.1002/ece3.4989.
Dolgova, O., & Lao, O. (2018). Evolutionary and medical consequences of archaic introgression into modern human genomes. Genes, 9(7), 358. https://doi.org/10.3390/genes9070358.
Durand, E. Y., Patterson, N., Reich, D., & Slatkin, M. (2011). Testing for ancient admixture between closely related populations. Molecular Biology and Evolution, 28, 2239-2252. https://doi.org/10.1093/molbev/msr048.
Durvasula, A., & Sankararaman, S. (2020). Recovering signals of ghost archaic introgression in African populations. Science Advances, 6(7), eaax5097. https://doi.org/10.1126/sciadv.aax5097.
Dutheil, J., Munch, K., Nam, K., Mailund, T., & Schierup, M. (2015). Srong selective sweeps on the X chromosome in the human-chimpanzee ancestor explain its low divergence. PLoS Genetics, 11, e1005451. https://doi.org/10.1371/journal.pgen.10054541.
Figueiró, H., Li, G., Trindade, F. J., Assis, J., Pais, F., Fernandes, G., Santos, S. H. D., Hughes, G. M., Komissarov, A., Antunes, A. Trinca, C. S., Rodrigues, M. R., Linderoth, T., Bi, K., Silveira, L., Azevedo, F. C. C., Kantek, D., Ramalho, E., Brassaloti, R. A., Villela, P. M. S., Nunes, A. L. V., Teixeira, R. H. F., Morato, R. G., Loska, D., Saragüeta, P., Gabaldón, T., Teeling, E. C., O’Brien, S. J., Nielsen, R., Coutinho, L. L., Oliveira, G., Murphy, W. J., & Eizirik, E. (2017). Genome-wide signatures of complex introgression and adaptive evolution in the big cats. Science Advances, 3(7), e1700299. https://doi.org/10.1126/sciadv.1700299.
Fontaine, M. C., Pease, J. B., Steele, A., Waterhouse, R. M., Neafsey, D. E., Sharakhov, I. V., Jiang, X., Hall, A. B., Catteruccia, F., Kakani, E. Mitchell, S. N., Wu, Y. C., Smith, H. A., Love, R. R., Lawniczak, M. K., Slotman, M. A., Emrich, S. J., Hahn, M. W., & Besansky, N. J. (2015). Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science, 347(6217), 1258524. https://doi.org/10.1126/science.1258524.
Fraïsse, C., & Sachdeva, H. (2021). The rates of introgression and barriers to genetic exchange between hybridizing species: sex chromosomes vs. autosomes. Genetics, 217(2), iyaa025. https://doi.org/10.1093/genetics/iyaa025.
Garrigan, D., Kingan, S. S. B., Geneva, A. J., Andolfatto, P., Clark, A. G., Thornton, K. R., & Presgraves, D. C. (2012). Genome sequencing reveals complex speciation in the Drosophila simulans clade. Genome Research, 22(8), 1499-1511. https://doi.org/10.1101/gr.130922.111.
Geraldes, A., Basset, P., Smith, K. L., & Nachman, M. W. (2011). Higher differentiation among subspecies of the house mouse (Mus musculus) in genomic regions with low recombination. Molecular Ecology, 20, 4722-4736. https://doi.org/10.1111/j.1365-294X.2011.05285.x.
Giordano, M. R., & Pace, R. M. III (2000). Morphometrics and movement patterns of coyote-like canids in a southwest Louisiana marsh complex. Proc Annu Conf Southeast Assoc Fish Agencies, 54, 424-435.
Goldberg, A., & Rosenberg, N. A. (2015). Beyond 2/3 and 1/3: The complex signatures of sex-biased admixture on the X chromosome. Genetics, 201(1), 263-279. https://doi.org/10.1534/genetics.115.178509.
Gompert, Z., & Buerkle, C. A. (2011). Bayesian estimation of genomic clines. Molecular Ecology, 20, 2111-2127. https://doi.org/10.1111/j.1365-294X.2011.05074.x.
Guan, Y. (2014). Detecting structure of haplotypes and local ancestry. Genetics, 196, 625-642. https://doi.org/10.1534/genetics.113.160697.
Haasl, R. J., & Payseur, B. A. (2016). Fifteen years of genomewide scans for selection: Trends, lessons and unaddressed genetic sources of complication. Molecular Ecology, 25(1), 5-23. https://doi.org/10.1111/mec.13339.
Hamilton, J. A., & Miller, J. M. (2016). Adaptive introgression as a resource for management and genetic conservation in a changing climate. Conservation Biology, 30(1), 33-41. https://doi.org/10.1111/cobi.12574.
Hammer, M., Woerner, A., Mendez, F., Watkins, J., Cox, M., & Wall, J. D. (2010). The ratio of human X chromosome to autosome diversity is positively correlated with genetic distance from genes. Nature Genetics, 42(10), 830-831. https://doi.org/10.1038/ng.651.
Harris, K., & Nielsen, R. (2016). The genetic cost of Neanderthal introgression. Genetics, 203(2), 881-891. https://doi.org/10.1534/genetics.116.186890.
Harrison, D. J. (1992). Dispersal characteristics of juvenile coyotes in Maine. The Journal of Wildlife Management, 56(1), 128-138. https://doi.org/10.2307/3808800.
Harrison, R. G., & Larson, E. L. (2016). Heterogeneous genome divergence, differential introgression, and the origin and structure of hybrid zones. Molecular Ecology, 25, 2454-2466. https://doi.org/10.1111/mec.13582.
Hedrick, P. W., Peterson, R. O., Vucetich, L. M., Adams, J. R., & Vucetich, J. A. (2014). Genetic rescue in Isle Royale wolves: genetic analysis and the collapse of the population. Conservation Genetics, 5(5), 1111-1121. https://doi.org/10.1007/s10592-014-0604-1.
Heppenheimer, E., Brzeski, K. E., Hinton, J. W., Chamberlain, M. J., Robinson, J., Wayne, R. K., & vonHoldt, B. M. (2020). A genome-wide perspective on the persistence of red wolf ancestry in southeastern canids. Journal of Heredity, 111(3), 277-286. https://doi.org/10.3390/genes9120606.
Heppenheimer, E., Brzeski, K. E., Hinton, J. W., Patterson, B. R., Rutledge, L. Y., DeCandia, A. L., Wheeldon, T., Fain, S. R., Hohenlohe, P. A., Kays, R. White, B.N., Chamberlain, M.J., vonHoldt, B.M. (2018). High genomic diversity and candidate genes under selection associated with range expansion in eastern coyote (Canis latrans) populations. Ecology and Evolution, 8, 12641-12655. https://doi.org/10.1002/ece3.4688.
Heppenheimer, E., Brzeski, K. E., Wooten, R., Waddell, W., Rutledge, L. Y., Chamberlain, M. J., Stahler, D. R., Hinton, J. W., & vonHoldt, B. M. (2018). Rediscovery of red wolf ghost alleles in a canid population along the American Gulf coast. Genes, 9, 618. https://doi.org/10.3390/genes9120618.
Heppenheimer, E., Cosio, D. S., Brzeski, K. E., Caudill, D., Van Why, K., Chamberlain, M. K., Hinton, J. W., & vonHoldt, B. (2018). Demographic history influences spatial patterns of genetic diversity in recently expanded coyote (Canis latrans) populations. Heredity, 120, 183-195. https://doi.org/10.1038/s41437-017-0014-5.
Heppenheimer, E., Harrigan, R. J., Rutledge, L. Y., Koepfli, K.-P., DeCandia, A. L., Brzeski, K. E., Benson, J. F., Wheeldon, T., Patterson, B. R., Kays, R., Hohenlohe, P. A., & von Holdt, B. M. (2018). Population genomic analysis of North American eastern wolves (Canis lycaon) supports their conservation priority status. Genes, 9(12), 606. https://doi.org/10.3390/genes9120606.
Hinton, J. W., Chamberlain, M. J., & Rabon, D. R. (2013). Red wolf (Canis rufus) recovery: a review with suggestions for future research. Animals, 3(3), 722-744. https://doi.org/10.3390/ani3030722.
Hinton, J. W., Gittleman, J. L., van Manen, F. T., & Chamberlain, M. J. (2017). Size-assortative choice and mate availability influences hybridization between red wolves (Canis rufus) and coyotes (Canis latrans). Ecology and Evolution, 8, 3927-3940. https://doi.org/10.1002/ece3.3950.
Hody, J. W., & Kays, R. (2018). Mapping the expansion of coyotes (Canis latrans) across North and Central America. ZooKeys, 759, 81-97. https://doi.org/10.3897/zookeys.759.15149.
Hufbauer, R. A., Szücs, M., Kasyon, E., Youngberg, C., Koontz, M. J., Richards, C., Tuff, T., & Melbourne, B. A. (2015). Three types of rescue can avert extinction in a changing environment. Proceedings of the National Academy of Sciences, 112(33), 10557-10562. https://doi.org/10.1073/pnas.1504732112.
Johnson, J. A., Altwegg, R., Evans, D. M., Ewen, J. G., Gordon, I. J., Pettorelli, N., & Young, J. K. (2016). Is there a future for genome-editing technologies in conservation? Animal Conservation, 19, 97-101. https://doi.org/10.1111/acv.12273.
Johnson, N. A., Coram, M. A., Shriver, M. D., Romieu, I., Barsh, G. S., London, S. J., & Tang, H. (2011). Ancestral components of admixed genomes in a Mexican cohort. PLoS Genetics, 7(12), e1002410. https://doi.org/10.1371/journal.pgen.1002410.
Jones, M. R., Mills, L. S., Alves, P. C., Callahan, C. M., Alves, J. M., Lafferty, D. J. R., Jiggins, F. M., Jensen, J. D., Melo-Ferreira, J., & Good, J. M. (2018). Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares. Science, 360(6395), 1355-1358. https://doi.org/10.1126/science.aar5273.
Juric, I., Aeschbacher, S., & Coop, G. (2016). The strength of selection against Neanderthal introgression. PLoS Genetics, 12(11), e1006340. https://doi.org/10.1371/journal.pgen.1006340.
Kays, R., Curtis, A., & Kirchman, J. J. (2010). Rapid adaptive evolution of northeastern coyotes via hybridization with wolves. Biology Letters, 6(1), 89-93. https://doi.org/10.1098/rsbl.2009.0575.
Kilgo, J. C., Shaw, C. E., Vukovich, M., Conroy, M. J., & Ruth, C. (2017). Reproductive characteristics of a coyote population before and during exploitation. The Journal of Wildlife Management, 81(8), 1386-1393. https://doi.org/10.1002/jwmg.21329.
Kitano, J., Ross, J. A., Mori, S., Kume, M., Jones, F. C., Chan, Y. F., Absher, D. M., Grimwood, J., Schmutz, J., Myers, R. M., Kingsley, D. M., & Peichel, C. L. (2009). A role for a neo-sex chromosome in stickleback speciation. Nature, 461(7267), 1079-1083. https://doi.org/10.1038/nature08441.
Kronenberger, J. A., Gerberich, J. C., Fitzpatrick, S. W., Broder, E. D., Angeloni, L. M., & Funk, W. C. (2018). An experimental test of alternative population augmentation scenarios. Conservation Biology, 32(4), 838-848. https://doi.org/10.1111/cobi.13076.
Larson, E. L., White, T. A., Ross, C. L., & Harrison, R. G. (2014). Gene flow and the maintenance of species boundaries. Molecular Ecology, 23, 1668-1678. https://doi.org/10.1111/mec.12601.
Li, G., Davis, B. W., Raudsepp, T., Pearks Wilkerson, A. J., Mason, V. C., Ferguson-Smith, M., O'Brien, P. C., Waters, P. D., & Murphy, W. J. (2013). Comparative analysis of mammalian Y chromosomes illuminates ancestral structure and lineage-specific evolution. Genome Research, 23(9), 1486-1495. https://doi.org/10.1101/gr.154286.112.
Li, G., Figueiró, H. V., Eizirik, E., & Murphy, W. J. (2019). Recombination-aware phylogenomics reveals the structured genomic landscape of hybridizing cat species. Molecular Biology and Evolution, 36(10), 2111-2126. https://doi.org/10.1093/molbev/msz139.
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., & Durbin, R. (2009). 1000 Genome Project Data Processing Subgroup. The sequence alignment/map format and SAMtools. Bioinformatics, 25, 2078-2079. https://doi.org/10.1093/bioinformatics/btp352.
Lindblad-Toh, K., Wade, C. M., Mikkelsen, T. S., Karlsson, E. K., Jaffe, D. B., Kamal, M., Clamp, M., Change, J. L., Kulbokas, E. J. III, Zody, M. C. Mauceli, E., Xie, X., Breen, M., Wayne, R. K., Ostrander, E. A., Ponting, C. P., Galibert, F., Smith, D. R., deJong, P. J., Kirkness, E., Alvarez, P., Biagi, T., Brockman, W., Butler, J., Chin, C. W., Cook, A., Cuff, J., Daly, M. J., DeCaprio, D., Gnerre, S., Grabherr, M., Kellis, M., Kleber, M., Bardeleben, C., Goodstadt, L., Heger, A., Hitte, C., Kim, L., Koepfli, K. P., Parker, H. G., Pollinger, J. P., Searle, S. M. J., Sutter, N. B., Thomas, R., Webber, C., & Lander, E. S. (2005). Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature, 438, 803-819. https://doi.org/10.1038/nature04338.
Lotterhos, K. E. (2019). The effect of neutral recombination variation on genome scans for selection. G3-Genes Genomes Genetics, 9(6), 1851-1867. https://doi.org/10.1534/g3.119.400088.
Lunter, G., & Goodson, M. (2011). Stampy: A statistical algorithm for sensitive and fast mapping of Illumina sequence reads. Genome Research, 21, 936-939. https://doi.org/10.1101/gr.111120.110.
Martin, S. H., Dasmahapatra, K. K., Nadeau, N. J., Salazar, C., Walters, J. R., Simpson, F., Blaxter, M., Manica, A., Mallet, J., & Jiggins, C. D. (2013). Genome-wide evidence for speciation with gene flow in Heliconius butterflies. Genome Research, 23, 1817-1828. https://doi.org/10.1101/gr.159426.113.
Martin, S. H., Davey, J. W., Salazar, C., & Jiggins, C. D. (2019). Recombination rate variation shapes barriers to introgression across butterfly genomes. PLoS Biology, 17(2), e2006288. https://doi.org/10.1371/journal.pbio.2006288.
Masly, J. P., & Presgraves, D. C. (2007). High-resolution genome-wide dissection of the two rules of speciation in Drosophila. PLoS Biology, 5, e243. https://doi.org/10.1371/journal.pbio.0050243.
McCarley, H. (1962). The taxonomic status of wild canids (Canidae) in the south central United States. Southwest Nat, 7, 227-235. http://www.jstor.org/stable/3668845.
McCarley, H., & Carley, C. 1979. Recent changes in distribution and status of wild red wolves (Canis rufus). Endangered Species Report no. 4. U.S. Fish and Wildlife Service, Albuquerque, NM.
Mech, L. D., Barber-Meyer, S. M., & Erb, J. (2016). Wolf (Canis lupus) generation time and proportion of current breeding females by age. PLoS One, 11(6), e0156682. https://doi.org/10.1371/journal.pone.0156682.
Miller, C. R., Adams, J. R., & Waits, L. (2003). Pedigree-based assignment test for reversing coyote (Canis latrans) introgression into the wild red wolf (Canis rufus) population. Molecular Ecology, 12, 3287-3301. https://doi.org/10.1046/j.1365-294x.2002.02003.x.
Monzón, J., Kays, R., & Dykhuizen, D. E. (2014). Assessment of coyote-wolf-dog admixture using ancestry-informative diagnostic SNPs. Molecular Ecology, 23(1), 182-197. https://doi.org/10.1111/mec.12570.
Murphy, S. M., Adams, J. R., Cox, J. J., & Waits, L. P. (2018). Substantial red wolf genetic ancestry persists in wild canids of southwestern Louisiana. Conservation Letters, 12, e12621. https://doi.org/10.1111/conl.12621.
Nowak, R. M. (1979). North American Quaternary Canis. Monograph number 6. Museum of Natural History. University of Kansas.
Nowak, R. M. (2002). The original status of wolves in eastern North America. Southeastern Naturalist, 1(2), 95-130. https://doi.org/10.1656/1528-7092(2002)001[0095:TOSOWI]2.0.CO;2.
Oziolor, E. M., Reid, N. M., Yair, S., Lee, K. M., Guberman VerPloeg, S., Bruns, P. C., Shaw, J. R., Whitehead, A., & Matson, C. W. (2019). Adaptive introgression enables evolutionary rescue from extreme environmental pollution. Science, 364(6439), 455-457. https://doi.org/10.1126/science.aav4155.
Paradiso, J. (1968). Canids recently collected in east Texas, with comments on the taxonomy of the red wolf. American Midland Naturalist, 80, 529-535. https://doi.org/10.2307/2423543.
Paradiso, J. L., & Nowak, R. M. (1972). Canis rufus. Mammalian Species, 22, 1-4. https://doi.org/10.2307/3503948.
Parker, G. R. (1995). Eastern coyote: the story of its success. Nimbus Publishing.
Payseur, B. A., & Nachman, M. W. (2005). The genomics of speciation: Investigating the molecular correlates of X chromosome introgression across the hybrid zone between Mus domesticus and Mus musculus. Biological Journal of the Linnean Society, 84, 523-534. https://doi.org/10.1111/j.1095-8312.2005.00453.x.
Phillips, M. K., Henry, V. G., & Kelly, B. T. (2003). Restoration of the red wolf. USGS Northern Prairie Wildlife Research Center, 319, https://digitalcommons.unl.edu/usgsnpwrc/319.
Pool, J. E., & Nielsen, R. (2009). Inference of historical changes in migration rate from the lengths of migrant tracts. Genetics, 181, 711-719. https://doi.org/10.1534/genetics.1108.098095.
Quinzin, M. C., Sandoval-Castillo, J., Miller, J. M., Beheregaray, L. B., Russello, M. A., Hunter, E. A., Gibbs, J. P., Tapia, W., Villalva, F., & Caccone, A. (2019). Genetically informed captive breeding of hybrids of an extinct species of Galapagos tortoise. Conservation Biology, 33(6), 1404-1414. https://doi.org/10.1111/cobi.13319.
Raudsepp, T., Das, P. J., Avila, F., & Chowdhary, B. P. (2012). The pseudoautosomal region and sex chromosome aneuploidies in domestic species. Sexual Development, 6, 72-83. https://doi.org/10.1159/000330627.
Riley, G. A., & McBride, R. T. 1972. A survey of the red wolf (Canis rufus) (No. 162). Bureau of Sport Fisheries and Wildlife.
Rochette, N. C., Rivera-Colón, A. G., & Catchen, J. M. (2019). Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics. Molecular Ecology, https://doi.org/10.1111/mec.15253.
Rotival, M., & Quintana-Murci, L. (2020). Functional consequences of archaic introgression and their impact on fitness. Genome Biology, 21, 3. https://doi.org/10.1186/s13059-019-1920-z.
Sacks, B. N. (2005). Reproduction and body condition of California coyotes (Canis latrans). Journal of Mammalogy, 86(5), 1036-1041. https://doi.org/10.1644/1545-1542.
Sacks, B. N., Mitchell, B. R., Williams, C. L., & Ernest, H. B. (2005). Coyote movements and social structure along a cryptic population genetic subdivision. Molecular Ecology, 14, 1241-1249. https://doi.org/10.1111/j.1365-294X.200502473.x.
Sankararaman, S., Mallick, S., Dannenmann, M., Prüfer, K., Kelso, J., Pääbo, S., Patterson, N., & Reich, D. (2014). The genomic landscape of Neanderthal ancestry in present-day humans. Nature, 507(7492), 354-357. https://doi.org/10.1038/nature12961.
Schumer, M., Xu, C., Powell, D. L., Durvasula, A., Skov, L., Holland, C., Blazier, J. C., Sankararaman, S., Andolfatto, P., Rosenthal, G. G., & Przeworski, M. (2018). Natural selection interacts with recombination to shape the evolution of hybrid genomes. Science, 360(6389), 656-660. https://doi.org/10.1126/science.aar3684.
Schweizer, R. M., Durvasula, A., Smith, J., Vohr, S. H., Stahler, D. R., Galaverni, M., Thalmann, O., Smith, D. W., Randi, E., Ostrander, E. A. Green, R. E., Lohmueller, K. E., Novembre, J., & Wayne, R. K. (2018). Natural selection and origin of a melanistic allele in North American gray wolves. Molecular Biology and Evolution, 35(5), 1190-1209. https://doi.org/10.1093/molbev/msy031.
Seixas, F. A., Boursot, P., & Melo-Ferreira, J. (2018). The genomic impact of historical hybridization with massive mitochondrial DNA introgression. Genome Biology, 19, 91. https://doi.org/10.1186/s13059-018-1471-8.
Sinding, M. H. S., Gopalakrishan, S., Vieira, F. G., Samaniego Castruita, J. A., Raundrup, K., Jørgensen, M. P. H., Meldgaard, M., Petersen, B., Sicheritz-Ponten, T. Mikkelsen, J. B., Marquard-Petersen, U., Dietz, R., Sonne, C., Dalén, L., Bachmann, L., Wiig, Ø., Hansen, A. J., & Gilbert, M. T. P. (2018). Population genomics of grey wolves and wolf-like canids in North America. PLoS Genetics, 14(11), e1007745. https://doi.org/10.1371/journal.pgen.1007745.
Sotola, V. A., Ruppel, D. S., Bonner, T. H., Nice, C. C., & Martin, N. H. (2019). Asymmetric introgression between fishes in the Red River basin of Texas is associated with variation in water quality. Ecology and Evolution, 9(4), 2083-2095. https://doi.org/10.1002/ece3.4901.
Stevison, L. S., & McGaugh, S. E. (2020). It’s time to stop sweeping recombination rate under the genome scan rug. Molecular Ecology, 29, 4249-4253. https://doi.org/10.1111/mec.15690.
Suarez-Gonzalez, A., Hefer, C. A., Christe, C., Corea, O., Lexer, C., Cronk, Q. C. B., & Douglas, C. J. (2016). Genomic and functional approaches reveal a case of adaptive introgression from Populus balsamifera (balsam poplar) in P. trichocarpa (black cottonwood). Molecular Ecology, 25(11), 2427-2442. https://doi.org/10.1111/mec.13539.
Turner, J. R. (1967). Why does the genotype not congeal? Evolution, 21, 645-656. https://doi.org/10.2307/2406761.
Van Belleghem, S.M., Baquero, M., Papa, R., Salazar, C., M cMillan, W.O., Counterman, B.A., Jiggins, C.D., Martin, S.H. (2018). Patterns of Z chromosome divergence among Heliconius species highlight the importance of historical demography. Molecular Ecology, 27(19), 3852-3872. https://doi.org/10.1111/mec.14560.
Veeramah, K., Gutenkunst, R., Woerner, A., Watkins, J., & Hammer, M. (2014). Evidence for increased levels of positive and negative selection on the X chromosome vs. autosomes in humans. Molecular Biology and Evolution, 31, 2267-2282. https://doi.org/10.1093/molbev/msu166.
vonHoldt, B. M., Brzeski, K. E., Wilcove, D. S., & Rutledge, L. Y. (2018). Redefining the role of admixture and genomics in species conservation. Conservation Letters, 11(2), e12371. https://doi.org/10.1111/conl.12371.
vonHoldt, B. M., Cahill, J. A., Fan, Z., Gronau, I., Robinson, J., Pollinger, J. P., Shapiro, B., Wall, J., & Wayne, R. K. (2016). Whole-genome sequence analysis shows that two endemic species of North American wolf are admixtures of the coyote and gray wolf. Sci Adv, 2, e1501714. https://doi.org/10.1126/sciadv.1501714.
vonHoldt, B. M., Kays, R., Pollinger, J. P., & Wayne, R. K. (2016). Admixture mapping identifies introgressed genomic regions in North American canids. Molecular Ecology, 25(11), 2443-2453. https://doi.org/10.1111/mec.13667.
vonHoldt, B. M., Pollinger, J. P., Earl, D. A., Knowles, J. C., Boyko, A. R., Parker, H., Geffen, E., Pilot, M., Jedrzejewski, W., Jedrzejewska, B. Sidorovich, V., Greco, C., Randi, E., Musiani, M., Kays, R., Bustamante, C. D., Ostrander, E. A., Novembre, J., & Wayne, R. K. (2011). A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids. Genome Research, 21, 1294-1305. https://doi.org/10.1101/gr.116301.110.
vonHoldt, B. M., Stahler, D. R., Smith, D. W., Earl, D. A., Pollinger, J. P., & Wayne, R. K. (2008). The genealogy and genetic viability of reintroduced Yellowstone grey wolves. Molecular Ecology, 17, 252-274. https://doi.org/10.1111/j.1365-294X.2007.03468.x.
Waples, R. S., Kays, R., Fredrickson, R. J., Pacifici, K., & Mills, L. S. (2018). Is the red wolf a listable unit under the US Endangered Species Act? Journal of Heredity, 109(5), 585-597. https://doi.org/10.1093/jhered/esy020.
Wilson, P. J., Rutledge, L. Y., Wheeldon, T. J., Patterson, B. R., & White, B. N. (2012). Y-chromosome evidence supports widespread signatures of three-species Canis hybridization in eastern North America. Ecology and Evolution, 2, 2325-2332. https://doi.org/10.1002/ece3.301.
Wong, A. K., Ruhe, A. L., Dumont, B. L., Robertson, K. R., Guerrero, G., Shull, S. M., Ziegle, J. S., Millon, L. V., Broman, K. W., Payseur, B. A., & Neff, M. W. (2010). A comprehensive linkage map of the dog genome. Genetics, 184, 595-605. https://doi.org/10.1534/genetics.109.106831.
فهرسة مساهمة: Keywords: RADseq; X chromosome; admixture; ancestry; recombination; red wolf
تواريخ الأحداث: Date Created: 20210929 Date Completed: 20221027 Latest Revision: 20221223
رمز التحديث: 20240628
DOI: 10.1111/mec.16200
PMID: 34585803
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-294X
DOI:10.1111/mec.16200