دورية أكاديمية

The role of forskolin as a lipolytic stimulator during in vitro oocyte maturation and the in vitro embryo production of livestock.

التفاصيل البيبلوغرافية
العنوان: The role of forskolin as a lipolytic stimulator during in vitro oocyte maturation and the in vitro embryo production of livestock.
المؤلفون: Raza SHA; College of Animal Science and Technology, Northwest A&F University, Yangling, China.; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, China., Abd El-Aziz AH; Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Daman Hour University, Damanhour, Egypt., Abdelnour SA; Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt., Easa AA; Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour, Egypt., Alagawany M; Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt., Farag MR; Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt., Al-Mutary MG; Department of Basic Sciences, College of Education, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia., Elfadadny A; Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt., Khan R; Department of Livestock Management, Breeding and Genetics, The University of Agriculture Peshawar, Peshawar, Pakistan., Quan G; Yunnan Animal Science and Veterinary Institute, Kunming, China., Cheng G; College of Animal Science and Technology, Northwest A&F University, Yangling, China., Zan L; College of Animal Science and Technology, Northwest A&F University, Yangling, China.; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, China.
المصدر: Reproduction in domestic animals = Zuchthygiene [Reprod Domest Anim] 2021 Dec; Vol. 56 (12), pp. 1486-1496. Date of Electronic Publication: 2021 Oct 14.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Paul Parey Scientific Publishers Country of Publication: Germany NLM ID: 9015668 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1439-0531 (Electronic) Linking ISSN: 09366768 NLM ISO Abbreviation: Reprod Domest Anim Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin ; Hamburg : Paul Parey Scientific Publishers, c1990-
مواضيع طبية MeSH: In Vitro Oocyte Maturation Techniques*/veterinary , Livestock*, Animals ; Colforsin/pharmacology ; Cryopreservation/veterinary ; Fertilization in Vitro/veterinary ; Oocytes
مستخلص: Cryopreservation is a modern technique which assists in the preservation of genetic material from oocytes and embryos for a long time. However, elevated vulnerability to cryopreservation due to the large accumulation of intracellular lipids within oocytes or embryos avoids success of this method. These lipids remain the main crucial factor limiting survival rates of oocytes and embryos after thawing. Lipid ingathering in the oocyte cytoplasm augments lipid peroxidation (LPO) and oxidative stress increases the apoptosis process, declines the viability after thawing, declines cytoskeleton actin filament injuries, lowers the blastocyst rates and reduces cryotolerance in the early stages of embryo development. There have been several attempts to reduce the ingathering of intracellular lipids in oocytes or embryos during the cryopreservation process, in that way enhancing the competence of cryopreserved oocytes or embryos and increasing their viability. One of the most applied agents for chemical delipidation is forskolin. Forskolin exhibited a possible part in improving the oocytes cryopreservation through stimulating cyclic adenosine monophosphate (cAMP) production. The main purpose of cAMP modulation is to provide energy to sustain the mammalian oocytes´ meiotic arrest. The purpose of the existing article is to assess and offer more evidence concerning the forskolin utilization as a modulator of cAMP during the cryopreservation of oocytes and its influence on meiosis completion and the reorganization of cytoplasm, which are prerequisites for the development of oocytes in addition to the contribution to fertilization and subsequently, the development of embryos.
(© 2021 Wiley-VCH GmbH.)
References: Abdelnour, S. A., Abd El-Hack, M. E., Swelum, A. A., Saadeldin, I. M., Noreldin, A. E., Khafaga, A. F., Al-Mutary, M. G., Arif, F., & Hussein, E. (2019). The usefulness of retinoic acid supplementation during in vitro oocyte maturation for the in vitro embryo production of livestock: A review. Animals, 9(8), 561. https://doi.org/10.3390/ani9080561.
Abe, H., Shiku, H., Aoyagi, S., & Hoshi, H. (2004). In vitro culture and evaluation of embryos for production of high quality bovine embryos. Journal of Mammalian Ova Research, 21(1), 22-30. https://doi.org/10.1274/jmor.21.22.
Albarracín, J. L., Morató, R., Izquierdo, D., & Mogas, T. (2005). Vitrification of calf oocytes: Effects of maturation stage and prematuration treatment on the nuclear and cytoskeletal components of oocytes and their subsequent development. Molecular Reproduction and Development, 72(2), 239-249. https://doi.org/10.1002/mrd.20326.
Albuz, F. K., Sasseville, M., Lane, M., Armstrong, D. T., Thompson, J. G., & Gilchrist, R. B. (2010). Simulated physiological oocyte maturation (SPOM): A novel in vitro maturation system that substantially improves embryo yield and pregnancy outcomes. Human Reproduction, 25(12), 2999-3011. https://doi.org/10.1093/humrep/deq246.
Andrabi, S. M. H., & Maxwell, W. M. C. (2007). A review on reproductive biotechnologies for conservation of endangered mammalian species. Animal Reproduction Science, 99(3-4), 223-243. https://doi.org/10.1016/j.anireprosci.2006.07.002.
Appeltant, R., Beek, J., Vandenberghe, L., Maes, D., & Van Soom, A. (2015). Increasing the cAMP concentration during in vitro maturation of pig oocytes improves cumulus maturation and subsequent fertilization in vitro. Theriogenology, 83(3), 344-352.
Bahmanpour, S., Keshavarz, A., & Fard, N. Z. (2020). Effect of different concentrations of forskolin along with mature granulosa cell co-culturing on mouse embryonic stem cell differentiation into germ-like cells. Iranian Biomedical Journal, 24(1), 30-38. https://doi.org/10.29252/ibj.24.1.30.
Bilodeau-Goeseels, S. (2006). Effects of culture media and energy sources on the inhibition of nuclear maturation in bovine oocytes. Theriogenology, 66(2), 297-306. https://doi.org/10.1016/j.theriogenology.2005.11.014.
Bilodeau-Goeseels, S. (2011). Cows are not mice: The role of cyclic AMP, phosphodiesterases, and adenosine monophosphate-activated protein kinase in the maintenance of meiotic arrest in bovine oocytes. Molecular Reproduction and Development, 78(10-11), 734-743. https://doi.org/10.1002/mrd.21337.
Byrne, A. T., Southgate, J., Brison, D. R., & Leese, H. J. (1999). Analysis of apoptosis in the preimplantation bovine embryo using TUNEL. Reproduction, 117(1), 97-105. https://doi.org/10.1530/jrf.0.1170097.
Cao, H., Bian, Y., Zhang, F., Tang, Y., Li, C., Chen, J., & Zhang, X. (2018). Functional role of Forskolin and PD166285 in the development of denuded mouse oocytes. Asian-Australasian Journal of Animal Sciences, 31(3), 344. https://doi.org/10.5713/ajas.17.0441.
Chen, S. U., Lien, Y. R., Chao, K. H., Ho, H.-N., Yang, Y. S., & Lee, T. Y. (2003). Effects of cryopreservation on meiotic spindles of oocytes and its dynamics after thawing: Clinical implications in oocyte freezing-a review article. Molecular and Cellular Endocrinology, 202(1-2), 101-107. https://doi.org/10.1016/S0303-7207(03)00070-4.
Chen, Z., Wu, Y., Nagano, M., Ueshiba, K., Furukawa, E., Yamamoto, Y., Chiba, H., & Hui, S.-P. (2020). Lipidomic profiling of dairy cattle oocytes by high performance liquid chromatography-high resolution tandem mass spectrometry for developmental competence markers. Theriogenology, 144, 56-66. https://doi.org/10.1016/j.theriogenology.2019.11.039.
Costa, C. B., Lunardelli, P. A., Bizarro-Silva, C., Fontes, P. K., Nogueira, M. F. G., & Seneda, M. M. (2019). Influence of forskolin supplementation on embryos produced in vitro. Livestock Science, 221, 15-18. https://doi.org/10.1016/j.livsci.2019.01.004.
Cuello, C., Gomis, J., Almiñana, C., Maside, C., Sanchez-Osorio, J., Gil, M. A., Sánchez, A., Parrilla, I., Vazquez, J. M., Roca, J., & Martinez, E. A. (2013). Effect of MEM vitamins and forskolin on embryo development and vitrification tolerance of in vitro-produced pig embryos. Animal Reproduction Science, 136(4), 296-302. https://doi.org/10.1016/j.anireprosci.2012.11.003.
Diez, C., Duque, P., Gómez, E., Hidalgo, C. O., Tamargo, C., Rodríguez, A., Fernández, L., Varga, S. D. L., Fernández, A., Facal, N., & Carbajo, M. (2005). Bovine oocyte vitrification before or after meiotic arrest: Effects on ultrastructure and developmental ability. Theriogenology, 64(2), 317-333. https://doi.org/10.1016/j.theriogenology.2004.11.023.
Ferguson, E. M., & Leese, H. J. (1999). Triglyceride content of bovine oocytes and early embryos. Reproduction, 116(2), 373-378. https://doi.org/10.1530/jrf.0.1160373.
Gilchrist, R. B., Zeng, H. T., Wang, X., Richani, D., Smitz, J., & Thompson, J. G. (2015). Reevaluation and evolution of the simulated physiological oocyte maturation system. Theriogenology, 84(4), 656-657. https://doi.org/10.1016/j.theriogenology.2015.03.032.
Jin, B., Kawai, Y., Hara, T., Takeda, S., Seki, S., Nakata, Y., Matsukawa, K., Koshimoto, C., Kasai, M., & Edashige, K. (2011). Pathway for the movement of water and cryoprotectants in bovine oocytes and embryos. Biology of Reproduction, 85(4), 834-847.
Kawashima, I., Okazaki, T., Noma, N., Nishibori, M., Yamashita, Y., & Shimada, M. (2008). Sequential exposure of porcine cumulus cells to FSH and/or LH is critical for appropriate expression of steroidogenic and ovulation-related genes that impact oocyte maturation in vivo and in vitro. Reproduction, 136(1), 9. https://doi.org/10.1530/REP-08-0074.
Krisher, R. L., Lane, M., & Bavister, B. D. (1999). Developmental competence and metabolism of bovine embryos cultured in semi-defined and defined culture media. Biology of Reproduction, 60(6), 1345-1352.
Lane, M., & Gardner, D. K. (2001). Vitrification of mouse oocytes using a nylon loop. Molecular Reproduction and Development: Incorporating Gamete Research, 58(3), 342-347.
Leal, G. R., dos Santos Monteiro, C. A., de Almeida Saraiva, H. F. R., dos Reis Camargo, A. J., Rodrigues, A. L. R., Oliveira, C. S., … Serapião, R. V. (2019). Evaluation of the simulated physiological oocyte maturation (SPOM) system on F1 Gyr× Holstein oocytes and embryos. Animal Production Science, 59(4), 634-640. https://doi.org/10.1071/AN17895.
Leroy, J., Genicot, G., Donnay, I., & Van Soom, A. (2005). Evaluation of the lipid content in bovine oocytes and embryos with nile red: A practical approach. Reproduction in Domestic Animals, 40(1), 76-78. https://doi.org/10.1111/j.1439-0531.2004.00556.x.
Lodde, V., Franciosi, F., Tessaro, I., Modina, S. C., & Luciano, A. M. (2013). Role of gap junction-mediated communications in regulating large-scale chromatin configuration remodeling and embryonic developmental competence acquisition in fully grown bovine oocyte. Journal of Assisted Reproduction and Genetics, 30(9), 1219-1226. https://doi.org/10.1007/s10815-013-0061-7.
Mahajan, N. (2015). Fertility preservation in female cancer patients: An overview. Journal of Human Reproductive Sciences, 8(1), 3.
Márquez-Alvarado, Y. C., Galina, C. S., Castilla, B., Leon, H., & Moreno-Mendoza, N. (2004). Evidence of damage in cryopreserved and fresh bovine embryos using the Tunel technique. Reproduction in Domestic Animals, 39(3), 141-145. https://doi.org/10.1111/j.1439-0531.2004.00492.x.
Marsico, T. V., de Camargo, J., Valente, R. S., & Sudano, M. J. (2019). Embryo competence and cryosurvival: Molecular and cellular features. Animal Reproduction, 16(3), 423-439. https://doi.org/10.21451/1984-3143-AR2019-0072.
Mavrides, A., & Morroll, D. (2005). Bypassing the effect of zona pellucida changes on embryo formation following cryopreservation of bovine oocytes. European Journal of Obstetrics & Gynecology and Reproductive Biology, 118(1), 66-70. https://doi.org/10.1016/j.ejogrb.2004.06.025.
Medina-Chávez, D.-A., Sánchez-Ajofrín, I., Peris-Frau, P., Maside, C., Montoro, V., Fernández-Santos, R., Garde, J. J., & Soler, A. J. (2021). cAMP modulators before in vitro maturation decrease DNA damage and boost developmental potential of sheep oocytes. Animals, 11(9), 2512. https://doi.org/10.3390/ani11092512.
Men, H., Agca, Y., Riley, L. K., & Critser, J. K. (2006). Improved survival of vitrified porcine embryos after partial delipation through chemically stimulated lipolysis and inhibition of apoptosis. Theriogenology, 66(8), 2008-2016. https://doi.org/10.1016/j.theriogenology.2006.05.018.
Meneghel, M., Dall'Acqua, P. C., Ambrogi, M., Leão, B. C. S., Rocha-Frigoni, N. A. S., & Mingoti, G. Z. (2017). Lipid content and cryotolerance of in vitro-produced bovine embryos treated with forskolin before vitrification. Pesquisa Veterinária Brasileira, 37, 395-400. https://doi.org/10.1590/s0100-736x2017000400015.
Metcalf, E. S., Masterson, K. R., Battaglia, D., Thompson, J. G., Foss, R., Beck, R., Cook, N. L., & O'Leary, T. (2020). Conditions to optimise the developmental competence of immature equine oocytes. Reproduction, Fertility and Development, 32(11), 1012-1021. https://doi.org/10.1071/RD19249.
Mingoti, G. Z., Castro, V. S. D. C., Méo, S. C., Barretto, L. S. S., & Garcia, J. M. (2009). The effect of interaction between macromolecule supplement and oxygen tension on bovine oocytes and embryos cultured in vitro. Zygote, 17(4), 321-328.
Monteiro, C. A. S., Leal, G. R., Saraiva, H. F. R. D. A., Garcia, J. M., Camargo, A. J. D. R., Serapião, R. V., Nogueira, L. A. G., Rodrigues, A. L. R., & Oliveira, C. S. (2017). Short term culture with cAMP modulators before vitrification significantly improve actin integrity in bovine oocytes. Livestock Science, 197, 96-101. https://doi.org/10.1016/j.livsci.2017.01.013.
Mooney, R. A., Swicegood, C. L., & Marx, R. B. (1986). Coupling of adenylate cyclase to lipolysis in permeabilized adipocytes: Direct evidence that an antilipolytic effect of insulin is independent of adenylate cyclase. Endocrinology, 119(5), 2240-2248. https://doi.org/10.1210/endo-119-5-2240.
Oliveira, C. S., da Silva Feuchard, V. L., de Souza Marques, S. C., & Saraiva, N. Z. (2021). Modulation of lipid metabolism through multiple pathways during oocyte maturation and embryo culture in bovine. Zygote, 1-9. https://doi.org/10.1017/S0967199421000629.
Panyaboriban, S., Tharasanit, T., Chankitisakul, V., Swangchan-Uthai, T., & Techakumphu, M. (2018). Treatment with chemical delipidation forskolin prior to cryopreservation improves the survival rates of swamp buffalo (Bubalus bubalis) and bovine (Bos indicus) in vitro produced embryos. Cryobiology, 84, 46-51. https://doi.org/10.1016/j.cryobiol.2018.08.003.
Park, B., Lee, H., Lee, Y., Elahi, F., Lee, J., Lee, S. T., Park, C.-K., Hyun, S.-H., & Lee, E. (2016). Cilostamide and forskolin treatment during pre-IVM improves preimplantation development of cloned embryos by influencing meiotic progression and gap junction communication in pigs. Theriogenology, 86(3), 757-765. https://doi.org/10.1016/j.theriogenology.2016.02.029.
Park, S. Y., Kim, E. Y., Cui, X. S., Tae, J. C., Lee, W. D., Kim, N. H., Park, S. P., & Lim, J. H. (2006). Increase in DNA fragmentation and apoptosis-related gene expression in frozen-thawed bovine blastocysts. Zygote, 14(2), 125-131. https://doi.org/10.1017/S0967199406003649.
Paschoal, D. M., Maziero, R. R. D., Sudano, M. J., Guastali, M. D., Vergara, L. E., Crocomo, L. F., & da Silva Rascado, T. (2016). In vitro embryos production after oocytes treatment with forskolin. Zygote, 24(2), 161-171.
Paschoal, D. M., Sudano, M. J., Guastali, M. D., Maziero, R. R. D., Crocomo, L. F., Magalhães, L. C. O., & da Cruz Landim-Alvarenga, F. (2014). Forskolin effect on the cryosurvival of in vitro-produced bovine embryos in the presence or absence of fetal calf serum. Zygote, 22(2), 146-157.
Paschoal, D. M., Sudano, M. J., Schwarz, K. R. L., Maziero, R. R. D., Guastali, M. D., Crocomo, L. F., Magalhães, L. C. O., Martins, A. Jr., Leal, C. L. V., & Landim-Alvarenga, F. D. C. (2017). Cell apoptosis and lipid content of in vitro-produced, vitrified bovine embryos treated with forskolin. Theriogenology, 87, 108-114.
Racowsky, C. (1985). Effect of forskolin on maintenance of meiotic arrest and stimulation of cumulus expansion, progesterone and cyclic AMP production by pig oocyte-cumulus complexes. Reproduction, 74(1), 9-21. https://doi.org/10.1530/jrf.0.0740009.
Razza, E. M. (2018). Treatment with cyclic adenosine monophosphate modulators prior to in vitro maturation alters the lipid composition and transcript profile of bovine cumulus-oocyte complexes and blastocysts. Reproduction, Fertility and Development, 30(10), 1314.
Richani, D., Lavea, C. F., Kanakkaparambil, R., Riepsamen, A. H., Bertoldo, M. J., Bustamante, S., & Gilchrist, R. B. (2019). Participation of the adenosine salvage pathway and cyclic AMP modulation in oocyte energy metabolism. Scientific Reports, 9(1), 18395. https://doi.org/10.1038/s41598-019-54693-y.
Richani, D., Wang, X., Zeng, H. T., Smitz, J., Thompson, J. G., & Gilchrist, R. B. (2014). Pre-maturation with cAMP modulators in conjunction with EGF-like peptides during in vitro maturation enhances mouse oocyte developmental competence. Molecular Reproduction and Development, 81(5), 422-435. https://doi.org/10.1002/mrd.22307.
Rizos, D., Gutierrez-Adan, A., Perez-Garnelo, S., De La Fuente, J., Boland, M. P., & Lonergan, P. (2003). Bovine embryo culture in the presence or absence of serum: Implications for blastocyst development, cryotolerance, and messenger RNA expression. Biology of Reproduction, 68(1), 236-243.
Romek, M., Gajda, B., Krzysztofowicz, E., & Smorąg, Z. (2009). Lipid content of non-cultured and cultured pig embryo. Reproduction in Domestic Animals, 44(1), 24-32. https://doi.org/10.1111/j.1439-0531.2007.00984.x.
Romek, M., Gajda, B., Krzysztofowicz, E., & Smorąg, Z. (2010). Changes of lipid composition in non-cultured and cultured porcine embryos. Theriogenology, 74(2), 265-276. https://doi.org/10.1016/j.theriogenology.2010.02.010.
Rose, R. D., Gilchrist, R. B., Kelly, J. M., Thompson, J. G., & Sutton-McDowall, M. L. (2013). Regulation of sheep oocyte maturation using cAMP modulators. Theriogenology, 79(1), 142-148. https://doi.org/10.1016/j.theriogenology.2012.09.020.
Ruffing, N. A., Steponkus, P. L., Pitt, R. E., & Parks, J. E. (1993). Osmometric behavior, hydraulic conductivity, and incidence of intracellular ice formation in bovine oocytes at different developmental stages. Cryobiology, 30(6), 562-580. https://doi.org/10.1006/cryo.1993.1059.
Sanches, B. V., Marinho, L. S. R., Filho, B. D. O., Pontes, J. H., Basso, A. C., Meirinhos, M. L., Silva-Santos, K. C., Ferreira, C. R., & Seneda, M. M. (2013). Cryosurvival and pregnancy rates after exposure of IVF-derived Bos indicus embryos to forskolin before vitrification. Theriogenology, 80(4), 372-377.
Shu, Y.-M., Zeng, H.-T., Ren, Z., Zhuang, G.-L., Liang, X.-Y., Shen, H.-W., Yao, S.-Z., Ke, P.-Q., & Wang, N.-N. (2008). Effects of cilostamide and forskolin on the meiotic resumption and embryonic development of immature human oocytes. Human Reproduction, 23(3), 504-513. https://doi.org/10.1093/humrep/dem344.
Sirard, M. A., & Bilodeau, S. (1990). Granulosa cells inhibit the resumption of meiosis in bovine oocytes in vitro. Biology of Reproduction, 43(5), 777-783.
Stein, A. (2007). Decreasing variability in your cell culture. BioTechniques, 43(2), 228-229. https://doi.org/10.2144/000112561.
Thomas, R. E., Armstrong, D. T., & Gilchrist, R. B. (2004). Bovine cumulus cell-oocyte gap junctional communication during in vitro maturation in response to manipulation of cell-specific cyclic adenosine 3′, 5′-monophosophate levels. Biology of Reproduction, 70(3), 548-556.
Thongkittidilok, C., Doriguzzi, N., Nagashima, J., Brown, M., Chansaenroj, A., & Songsasen, N. (2020). Cilostamide and forskolin maintain gap junction function of incubated dog follicles. Theriogenology, 142, 222-228. https://doi.org/10.1016/j.theriogenology.2019.09.034.
Vajta, G. (2000). Vitrification of the oocytes and embryos of domestic animals. Animal Reproduction Science, 60, 357-364. https://doi.org/10.1016/S0378-4320(00)00097-X.
Wu, X., Han, Z., Hao, X., Zhao, Y., Zhou, C., Wen, X., & Liang, C. (2020). Combined use of dbcAMP and IBMX minimizes the damage induced by a long-term artificial meiotic arrest in mouse germinal vesicle oocytes. Molecular Reproduction and Development, 87(2), 262-273. https://doi.org/10.1002/mrd.23315.
Zeng, H.-T., Richani, D., Sutton-McDowall, M. L., Ren, Z., Smitz, J. E., Stokes, Y., Gilchrist, R. B., & Thompson, J. G. (2014). Prematuration with cyclic adenosine monophosphate modulators alters cumulus cell and oocyte metabolism and enhances developmental competence of in vitro-matured mouse oocytes. Biology of Reproduction, 91(2), 41-47.
Zhang, X., Wang, T., Song, J., Deng, J., & Sun, Z. (2020). Study on follicular fluid metabolomics components at different ages based on lipid metabolism. Reproductive Biology and Endocrinology, 18, 1-8. https://doi.org/10.1186/s12958-020-00599-8.
معلومات مُعتمدة: 2018YFD0501700 National Key Research and Development Program of China; 2020T130540 China Postdoctoral Science Foundation; CARS-37 National Beef and Yak Industrial Technology System; NYKJ-2018-LY09 Agricultural Science and Technology Innovation and Transformation Project of Shaanxi Province; 2016KTCL02-15 Technical Innovation Engineering Project of Shaanxi Province
فهرسة مساهمة: Keywords: embryo; forskolin; in vitro; lipolytic; oocytes
المشرفين على المادة: 1F7A44V6OU (Colforsin)
تواريخ الأحداث: Date Created: 20210930 Date Completed: 20220117 Latest Revision: 20220117
رمز التحديث: 20221213
DOI: 10.1111/rda.14021
PMID: 34592022
قاعدة البيانات: MEDLINE
الوصف
تدمد:1439-0531
DOI:10.1111/rda.14021