دورية أكاديمية

Behavioral, neuroplasticity and metabolic effects of 7,8-dihydroxy-4-methylcoumarin associated with physical activity in mice.

التفاصيل البيبلوغرافية
العنوان: Behavioral, neuroplasticity and metabolic effects of 7,8-dihydroxy-4-methylcoumarin associated with physical activity in mice.
المؤلفون: Lopes PKF; Department of Health Sciences, Federal University of Lavras, Lavras, MG, 37200-900, Brazil., Engel DF; Laboratory of Cell Signaling and Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, 13084-970, Brazil. daiane.engel01@gmail.com.; School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, MG, 35400-000, Brazil. daiane.engel01@gmail.com., Bertolini NO; Department of Health Sciences, Federal University of Lavras, Lavras, MG, 37200-900, Brazil., de Azevedo Martins MS; Department of Health Sciences, Federal University of Lavras, Lavras, MG, 37200-900, Brazil., Pereira CA; Department of Health Sciences, Federal University of Lavras, Lavras, MG, 37200-900, Brazil., Velloso LA; Laboratory of Cell Signaling and Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, 13084-970, Brazil., Thomasi SS; Department of Chemistry, Federal University of Lavras, Lavras, MG, 37200-900, Brazil., de Moura RF; Department of Health Sciences, Federal University of Lavras, Lavras, MG, 37200-900, Brazil.
المصدر: Metabolic brain disease [Metab Brain Dis] 2021 Dec; Vol. 36 (8), pp. 2425-2436. Date of Electronic Publication: 2021 Oct 02.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 8610370 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-7365 (Electronic) Linking ISSN: 08857490 NLM ISO Abbreviation: Metab Brain Dis Subsets: MEDLINE
أسماء مطبوعة: Publication: 2005- : Amsterdam : Springer
Original Publication: New York : Plenum, c1986-
مواضيع طبية MeSH: Coumarins*/pharmacology , Neuronal Plasticity*, Animals ; Hippocampus/metabolism ; Mice ; Mice, Inbred C57BL
مستخلص: The search for strategies to develop resilience against metabolic and neuropsychiatric disorders has motivated the clinical and experimental assessment of early life interventions such as lifestyle-based and use of unconventional pharmacological compounds. In this study, we assessed the effects of voluntary physical activity and 7,8-Dihydroxy-4-methylcoumarin (DHMC), independently or in combination, over mice physiological and behavioral parameters, adult hippocampal and hypothalamic neurogenesis, and neurotrophic factors expression in the hypothalamus. C57Bl/6J mice were submitted to a 29-day treatment with DHMC and allowed free access to a running wheel. We found that DHMC treatment alone reduced fasting blood glucose levels. Moreover, physical activity showed an anxiolytic effect in the elevated plus maze task and DHMC produced additional anxiolytic behavior, evidenced by reduced activity during the light cycle in the physical activity group. Although we did not find any differences in hypothalamic or hippocampal adult neurogenesis, DHMC increased gene expression levels of VEGF, which was correlated to the reduced fasting glucose levels. In conclusion, our data emphasize the potential of physical activity in reducing development of neuropsychiatric conditions, such as anxiety, and highlights DHMC as an attractive compound to be investigated in future studies addressing neuropsychiatric disorders associated with metabolic conditions.
(© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Adu-Nti F et al (2021) Osthole ameliorates estrogen deficiency-induced cognitive impairment in female mice. Front Pharmacol. https://doi.org/10.3389/FPHAR.2021.641909. (PMID: 10.3389/FPHAR.2021.641909340254138134730)
Ahmed S, Nur-e-Alam M, Parveen I et al (2020) Stimulation of insulin secretion by 5-methylcoumarins and its sulfur analogues isolated from Clutia lanceolata Forssk. Phytochemistry 170:112213. https://doi.org/10.1016/j.phytochem.2019.112213. (PMID: 10.1016/j.phytochem.2019.11221331786408)
Alkadhi KA (2018) Exercise as a positive modulator of brain function. Mol Neurobiol 55:3112–3130. https://doi.org/10.1007/s12035-017-0516-4. (PMID: 10.1007/s12035-017-0516-428466271)
Alleva E, Francia N (2009) Psychiatric vulnerability: suggestions from animal models and role of neurotrophins. Neurosci Biobehav Rev 33:525–536. https://doi.org/10.1016/j.neubiorev.2008.09.004. (PMID: 10.1016/j.neubiorev.2008.09.00418824030)
An JJ, Kinney CE, Tan J-W et al (2020) TrkB-expressing paraventricular hypothalamic neurons suppress appetite through multiple neurocircuits. Nat Commun 11:1729. https://doi.org/10.1038/s41467-020-15537-w. (PMID: 10.1038/s41467-020-15537-w322654387138837)
Andrikopoulos S et al (2008) Evaluating the glucose tolerance test in mice. Am J Physiol Endocrinol Metab 295(6):1323–1332. https://doi.org/10.1152/AJPENDO.90617.2008. (PMID: 10.1152/AJPENDO.90617.2008)
Angevaren M, Aufdemkampe G, Verhaar HJJ et al (2008) Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD005381.pub3. (PMID: 10.1002/14651858.CD005381.pub318646126)
Armstrong MJ, Okun MS (2020) Diagnosis and treatment of Parkinson disease: a review. JAMA 323:548–560. https://doi.org/10.1001/jama.2019.22360. (PMID: 10.1001/jama.2019.2236032044947)
Bădescu S, Tătaru C, Kobylinska L et al (2016) The association between diabetes mellitus and depression. J Med Life 9:120–125. (PMID: 274537394863499)
Bhatti GK, Reddy AP, Reddy PH, Bhatti JS (2020) Lifestyle modifications and nutritional interventions in aging-associated cognitive decline and Alzheimer’s disease. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2019.00369. (PMID: 10.3389/fnagi.2019.00369319981176966236)
Caliskan H, Akat F, Tatar Y et al (2019) Effects of exercise training on anxiety in diabetic rats. Behav Brain Res 376:112084. https://doi.org/10.1016/j.bbr.2019.112084. (PMID: 10.1016/j.bbr.2019.11208431356829)
Carrera I, Martínez O, Cacabelos R (2020) Neuroprotection with natural antioxidants and nutraceuticals in the context of brain cell degeneration: the epigenetic connection. CTMC 19:2999–3011. https://doi.org/10.2174/1568026619666191202155738. (PMID: 10.2174/1568026619666191202155738)
Caspersen CJ, Powell KE, Christenson GM (1985) Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep 100:126–131. (PMID: 39207111424733)
Chen C, Shan W (2019) Pharmacological and non-pharmacological treatments for major depressive disorder in adults: A systematic review and network meta-analysis. Psychiatry Res 281:112595. https://doi.org/10.1016/j.psychres.2019.112595. (PMID: 10.1016/j.psychres.2019.11259531627074)
Choi SH, Bylykbashi E, Chatila ZK et al (2018) Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer’s mouse model. Science 361:eaan8821. https://doi.org/10.1126/science.aan8821. (PMID: 10.1126/science.aan8821301903796149542)
Cooper-Kuhn C et al (2002) Is it all DNA repair? Methodological considerations for detecting neurogenesis in the adult brain. Dev Brain Res. https://doi.org/10.1016/s0165-3806(01)00243-7. (PMID: 10.1016/s0165-3806(01)00243-7)
Cotman CW, Berchtold NC, Christie L-A (2007) Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci 30:464–472. https://doi.org/10.1016/j.tins.2007.06.011. (PMID: 10.1016/j.tins.2007.06.01117765329)
Cunha MP, Oliveira Á, Pazini FL et al (2013) The antidepressant-like effect of physical activity on a voluntary running wheel. Med Sci Sports Exerc 45:851–859. https://doi.org/10.1249/MSS.0b013e31827b23e6. (PMID: 10.1249/MSS.0b013e31827b23e623190594)
Curran E, Rosato M, Ferry F, Leavey G (2020) Prevalence and factors associated with anxiety and depression in older adults: gender differences in psychosocial indicators. J Affect Disord 267:114–122. https://doi.org/10.1016/j.jad.2020.02.018. (PMID: 10.1016/j.jad.2020.02.01832063562)
Deng W, Aimone JB, Gage FH (2010) New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 11:339–350. https://doi.org/10.1038/nrn2822. (PMID: 10.1038/nrn2822203545342886712)
Dugger BN, Dickson DW (2017) Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol 9:a028035. https://doi.org/10.1101/cshperspect.a028035. (PMID: 10.1101/cshperspect.a028035280625635495060)
Duman RS (2009) Neuronal damage and protection in the pathophysiology and treatment of psychiatric illness: stress and depression. Dialogues Clin Neurosci 11:239–255. (PMID: 10.31887/DCNS.2009.11.3/rsduman)
Duman RS, Heninger GR, Nestler EJ (1997) A molecular and cellular theory of depression. Arch Gen Psychiatry 54:597–606. https://doi.org/10.1001/archpsyc.1997.01830190015002. (PMID: 10.1001/archpsyc.1997.018301900150029236543)
Estrada JA, Contreras I (2019) Nutritional modulation of immune and central nervous system homeostasis: the role of diet in development of neuroinflammation and neurological disease. Nutrients 11:1076. https://doi.org/10.3390/nu11051076. (PMID: 10.3390/nu110510766566411)
Fabel K, Fabel K, Tam B et al (2003) VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur J Neurosci 18:2803–2812. https://doi.org/10.1111/j.1460-9568.2003.03041.x. (PMID: 10.1111/j.1460-9568.2003.03041.x14656329)
Fargali S, Sadahiro M, Jiang C et al (2012) Role of neurotrophins in the development and function of neural circuits that regulate energy homeostasis. J Mol Neurosci 48:654–659. https://doi.org/10.1007/s12031-012-9790-9. (PMID: 10.1007/s12031-012-9790-9225814493480664)
Gao Z, Wen Q, Xia Y et al (2014) Osthole augments therapeutic efficiency of neural stem cells-based therapy in experimental autoimmune encephalomyelitis. J Pharmacol Sci 124:54–65. https://doi.org/10.1254/jphs.13144fp. (PMID: 10.1254/jphs.13144fp24441773)
Gao Q, Jeon SJ, Jung HA et al (2015) Nodakenin enhances cognitive function and adult hippocampal neurogenesis in mice. Neurochem Res 40:1438–1447. https://doi.org/10.1007/s11064-015-1612-3. (PMID: 10.1007/s11064-015-1612-325998887)
Hill AS, Sahay A, Hen R (2015) Increasing adult hippocampal neurogenesis is sufficient to reduce anxiety and depression-like behaviors. Neuropsychopharmacology 40:2368–2378. https://doi.org/10.1038/npp.2015.85. (PMID: 10.1038/npp.2015.85258331294538351)
Hötting K, Röder B (2013) Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci Biobehav Rev 37:2243–2257. https://doi.org/10.1016/j.neubiorev.2013.04.005. (PMID: 10.1016/j.neubiorev.2013.04.00523623982)
Ivić V, Blažetić S, Labak I et al (2016) Ovariectomy and chronic stress lead toward leptin resistance in the satiety centers and insulin resistance in the hippocampus of Sprague-Dawley rats. Croat Med J 57:194–206. https://doi.org/10.3325/cmj.2016.57.194. (PMID: 10.3325/cmj.2016.57.194271063604856194)
Jais A, Solas M, Backes H et al (2016) Myeloid-cell-derived VEGF maintains brain glucose uptake and limits cognitive impairment in obesity. Cell 165:882–895. https://doi.org/10.1016/j.cell.2016.03.033. (PMID: 10.1016/j.cell.2016.03.03327133169)
Jameel E, Umar T, Kumar J, Hoda N (2016) Coumarin: a privileged scaffold for the design and development of antineurodegenerative agents. Chem Biol Drug Des 87:21–38. https://doi.org/10.1111/cbdd.12629. (PMID: 10.1111/cbdd.1262926242562)
Jelenik T, Dille M, Müller-Lühlhoff S et al (2018) FGF21 regulates insulin sensitivity following long-term chronic stress. Mol Metab 16:126–138. https://doi.org/10.1016/j.molmet.2018.06.012. (PMID: 10.1016/j.molmet.2018.06.012299804846158095)
Jin X, Wang Y, Li X et al (2015) 7,8-Dihydroxy-4-methylcoumarin provides neuroprotection by increasing hippocalcin expression. Neurotox Res 27:268–274. https://doi.org/10.1007/s12640-014-9507-7. (PMID: 10.1007/s12640-014-9507-725752619)
Kadakol A, Sharma N, Kulkarni YA, Gaikwad AB (2016) Esculetin: a phytochemical endeavor fortifying effect against non-communicable diseases. Biomed Pharmacother 84:1442–1448. https://doi.org/10.1016/j.biopha.2016.10.072. (PMID: 10.1016/j.biopha.2016.10.07227810338)
Kandola A, Vancampfort D, Herring M et al (2018) Moving to beat anxiety: epidemiology and therapeutic issues with physical activity for anxiety. Curr Psychiatry Rep 20:63. https://doi.org/10.1007/s11920-018-0923-x. (PMID: 10.1007/s11920-018-0923-x300432706061211)
Kang SY, Kim YC (2007) Decursinol and decursin protect primary cultured rat cortical cells from glutamate-induced neurotoxicity. J Pharm Pharmacol 59:863–870. https://doi.org/10.1211/jpp.59.6.0013. (PMID: 10.1211/jpp.59.6.001317637179)
Kessing LV, Willer IS, Knorr U (2011) Volume of the adrenal and pituitary glands in depression. Psychoneuroendocrinology 36:19–27. https://doi.org/10.1016/j.psyneuen.2010.05.007. (PMID: 10.1016/j.psyneuen.2010.05.00720646833)
Kokoeva MV (2005) Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science 310:679–683. https://doi.org/10.1126/science.1115360. (PMID: 10.1126/science.111536016254185)
Kokoeva MV, Yin H, Flier JS (2007) Evidence for constitutive neural cell proliferation in the adult murine hypothalamus. J Comp Neurol 505:209–220. https://doi.org/10.1002/cne.21492. (PMID: 10.1002/cne.2149217853440)
Kronenberg G, Bick-Sander A, Bunk E et al (2006) Physical exercise prevents age-related decline in precursor cell activity in the mouse dentate gyrus. Neurobiol Aging 27:1505–1513. https://doi.org/10.1016/j.neurobiolaging.2005.09.016. (PMID: 10.1016/j.neurobiolaging.2005.09.01616271278)
Langlet F, Levin BE, Luquet S et al (2013) Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting. Cell Metab 17:607–617. https://doi.org/10.1016/j.cmet.2013.03.004. (PMID: 10.1016/j.cmet.2013.03.004235620803695242)
Lee DA, Bedont JL, Pak T et al (2012) Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat Neurosci 15:700–702. https://doi.org/10.1038/nn.3079. (PMID: 10.1038/nn.3079224468823380241)
Li J, Tang Y, Cai D (2012) IKKβ/NF-κB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nat Cell Biol 14:999–1012. https://doi.org/10.1038/ncb2562. (PMID: 10.1038/ncb2562229409063463771)
Lyra e Silva NDM, Gonçalves RA, Boehnke SE et al (2019) Understanding the link between insulin resistance and Alzheimer’s disease: insights from animal models. Exp Neurol 316:1–11. https://doi.org/10.1016/j.expneurol.2019.03.016. (PMID: 10.1016/j.expneurol.2019.03.01630930096)
Ming G, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70:687–702. https://doi.org/10.1016/j.neuron.2011.05.001. (PMID: 10.1016/j.neuron.2011.05.001216098253106107)
Molina-Jiménez MF, Sánchez-Reus MI, Cascales M et al (2005) Effect of fraxetin on antioxidant defense and stress proteins in human neuroblastoma cell model of rotenone neurotoxicity. Comparative study with myricetin and N-acetylcysteine. Toxicol Appl Pharmacol 209:214–225. https://doi.org/10.1016/j.taap.2005.04.009. (PMID: 10.1016/j.taap.2005.04.00915904944)
Musiek ES, Holtzman DM (2016) Mechanisms linking circadian clocks, sleep, and neurodegeneration. Science 354:1004–1008. https://doi.org/10.1126/science.aah4968. (PMID: 10.1126/science.aah4968278850065219881)
Myers MG, Olson DP (2012) Central nervous system control of metabolism. Nature 491:357–363. https://doi.org/10.1038/nature11705. (PMID: 10.1038/nature117052315157823151578)
Niwa A, Nishibori M, Hamasaki S et al (2016) Voluntary exercise induces neurogenesis in the hypothalamus and ependymal lining of the third ventricle. Brain Struct Funct 221:1653–1666. https://doi.org/10.1007/s00429-015-0995-x. (PMID: 10.1007/s00429-015-0995-x25633473)
Nowacka MM, Paul-Samojedny M, Bielecka AM et al (2015) LPS reduces BDNF and VEGF expression in the structures of the HPA axis of chronic social stressed female rats. Neuropeptides 54:17–27. https://doi.org/10.1016/j.npep.2015.09.003. (PMID: 10.1016/j.npep.2015.09.00326396035)
Potdar MK, Mohile SS, Salunkhe MM (2001) Coumarin syntheses via Pechmann condensation in Lewis acidic chloroaluminate ionic liquid. Tetrahedron Lett 42:9285–9287. https://doi.org/10.1016/S0040-4039(01)02041-X. (PMID: 10.1016/S0040-4039(01)02041-X)
Price JL, Drevets WC (2010) Neurocircuitry of mood disorders. Neuropsychopharmacology 35:192–216. https://doi.org/10.1038/npp.2009.104. (PMID: 10.1038/npp.2009.10419693001)
Qin T, Fang F, Song M et al (2017) Umbelliferone reverses depression-like behavior in chronic unpredictable mild stress-induced rats by attenuating neuronal apoptosis via regulating ROCK/Akt pathway. Behav Brain Res 317:147–156. https://doi.org/10.1016/j.bbr.2016.09.039. (PMID: 10.1016/j.bbr.2016.09.03927646771)
Rajadurai M, Stanely Mainzen Prince P (2006) Preventive effect of naringin on lipid peroxides and antioxidants in isoproterenol-induced cardiotoxicity in Wistar rats: biochemical and histopathological evidences. Toxicology 228:259–268. https://doi.org/10.1016/j.tox.2006.09.005. (PMID: 10.1016/j.tox.2006.09.00517084010)
Randjelovic PJ et al (2020) Anxiolytic-like action of selected 4-(alkylamino)-3-nitrocoumarin derivatives in BALB/c mice. Chem Biodivers. https://doi.org/10.1002/CBDV.202000206. (PMID: 10.1002/CBDV.20200020632975038)
Russell G, Lightman S (2019) The human stress response. Nat Rev Endocrinol 15:525–534. https://doi.org/10.1038/s41574-019-0228-0. (PMID: 10.1038/s41574-019-0228-031249398)
Sahay A, Hen R (2008) Hippocampal neurogenesis and depression. Novartis Found Symp 289:152–160. (PMID: 10.1002/9780470751251.ch12)
Santarelli L, Saxe M, Gross C et al (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809. https://doi.org/10.1126/science.1083328. (PMID: 10.1126/science.108332812907793)
Schneeberger M, Gomis R, Claret M (2014) Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. J Endocrinol 220:T25–T46. https://doi.org/10.1530/JOE-13-0398. (PMID: 10.1530/JOE-13-039824222039)
Schüler R, Seebeck N, Osterhoff MA et al (2018) VEGF and GLUT1 are highly heritable, inversely correlated and affected by dietary fat intake: consequences for cognitive function in humans. Mol Metab 11:129–136. https://doi.org/10.1016/j.molmet.2018.02.004. (PMID: 10.1016/j.molmet.2018.02.004295069096001408)
Shapiro A, Cheng K-Y, Gao Y et al (2011) The act of voluntary wheel running reverses dietary hyperphagia and increases leptin signaling in ventral tegmental area of aged obese rats. GER 57:335–342. https://doi.org/10.1159/000321343. (PMID: 10.1159/000321343)
Skalicka-Woźniak K, Orhan IE, Cordell GA et al (2016) Implication of coumarins towards central nervous system disorders. Pharmacol Res 103:188–203. https://doi.org/10.1016/j.phrs.2015.11.023. (PMID: 10.1016/j.phrs.2015.11.02326657416)
Spartano NL, Stevenson MD, Xanthakis V et al (2017) Associations of objective physical activity with insulin sensitivity and circulating adipokine profile: the Framingham Heart Study. Clin Obesity 7:59–69. https://doi.org/10.1111/cob.12177. (PMID: 10.1111/cob.12177)
Swift DL, McGee JE, Earnest CP et al (2018) The effects of exercise and physical activity on weight loss and maintenance. Prog Cardiovasc Dis 61:206–213. https://doi.org/10.1016/j.pcad.2018.07.014. (PMID: 10.1016/j.pcad.2018.07.01430003901)
Togashi Y, Shirakawa J, Okuyama T et al (2016) Evaluation of the appropriateness of using glucometers for measuring the blood glucose levels in mice. Sci Rep 6:25465. https://doi.org/10.1038/srep25465. (PMID: 10.1038/srep25465271514244858715)
Togna AR, Firuzi O, Latina V et al (2014) 4-Methylcoumarin derivatives with anti-inflammatory effects in activated microglial cells. Biol Pharm Bull 37:60–66. https://doi.org/10.1248/bpb.b13-00568. (PMID: 10.1248/bpb.b13-0056824389482)
Tyagi YK, Kumar A, Raj HG et al (2005) Synthesis of novel amino and acetyl amino-4-methylcoumarins and evaluation of their antioxidant activity. Eur J Med Chem 40:413–420. https://doi.org/10.1016/j.ejmech.2004.09.002. (PMID: 10.1016/j.ejmech.2004.09.00215804541)
van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270. https://doi.org/10.1038/6368. (PMID: 10.1038/636810195220)
van Praag H, Shubert T, Zhao C, Gage FH (2005) Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci 25:8680–8685. https://doi.org/10.1523/JNEUROSCI.1731-05.2005. (PMID: 10.1523/JNEUROSCI.1731-05.2005161770361360197)
Wilson ML (2017) Prediabetes: beyond the borderline. Nurs Clin North Am 52:665–677. https://doi.org/10.1016/j.cnur.2017.07.011. (PMID: 10.1016/j.cnur.2017.07.01129080583)
Wu L, Wang X, Xu W et al (2009) The structure and pharmacological functions of coumarins and their derivatives. Curr Med Chem 16:4236–4260. https://doi.org/10.2174/092986709789578187. (PMID: 10.2174/09298670978957818719754420)
Xu B, Goulding EH, Zang K et al (2003) Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat Neurosci 6:736–742. https://doi.org/10.1038/nn1073. (PMID: 10.1038/nn1073127967842710100)
Yang M, Luo C-H, Zhu Y-Q et al (2020) 7, 8-Dihydroxy-4-methylcoumarin reverses depression model-induced depression-like behaviors and alteration of dendritic spines in the mood circuits. Psychoneuroendocrinology 119:104767. https://doi.org/10.1016/j.psyneuen.2020.104767. (PMID: 10.1016/j.psyneuen.2020.10476732563935)
Yao Y, Gao Z, Liang W et al (2015) Osthole promotes neuronal differentiation and inhibits apoptosis via Wnt/β-catenin signaling in an Alzheimer’s disease model. Toxicol Appl Pharmacol 289:474–481. https://doi.org/10.1016/j.taap.2015.10.013. (PMID: 10.1016/j.taap.2015.10.01326525509)
فهرسة مساهمة: Keywords: Anxiolytic; Coumarin; DHMC; Fasting glucose; Physical activity; VEGF
المشرفين على المادة: 0 (7,8-dihydroxy-4-methylcoumarin)
0 (Coumarins)
تواريخ الأحداث: Date Created: 20211002 Date Completed: 20220407 Latest Revision: 20220510
رمز التحديث: 20231215
DOI: 10.1007/s11011-021-00849-7
PMID: 34599738
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-7365
DOI:10.1007/s11011-021-00849-7