دورية أكاديمية

Immunoinformatics analysis and evaluation of recombinant chimeric triple antigen toxoid (r-HAB) against Staphylococcus aureus toxaemia in mouse model.

التفاصيل البيبلوغرافية
العنوان: Immunoinformatics analysis and evaluation of recombinant chimeric triple antigen toxoid (r-HAB) against Staphylococcus aureus toxaemia in mouse model.
المؤلفون: Kota RK; Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed To Be University), Guntur district, Vadlamudi, 522 213, Andhra, Pradesh, India., Kolla HB; Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed To Be University), Guntur district, Vadlamudi, 522 213, Andhra, Pradesh, India., Reddy PN; Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed To Be University), Guntur district, Vadlamudi, 522 213, Andhra, Pradesh, India. prakashreddy.369@gmail.com., Kalagatur NK; BU-DRDO Centre for Life Sciences, 641 046, Coimbatore, Tamil Nadu, India., Samudrala SK; Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed To Be University), Guntur district, Vadlamudi, 522 213, Andhra, Pradesh, India.
المصدر: Applied microbiology and biotechnology [Appl Microbiol Biotechnol] 2021 Nov; Vol. 105 (21-22), pp. 8297-8311. Date of Electronic Publication: 2021 Oct 05.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer International Country of Publication: Germany NLM ID: 8406612 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0614 (Electronic) Linking ISSN: 01757598 NLM ISO Abbreviation: Appl Microbiol Biotechnol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin ; New York : Springer International, c1984-
مواضيع طبية MeSH: Bacterial Toxins*/genetics , Toxemia*, Animals ; Antibodies, Bacterial ; Enterotoxins ; Escherichia coli/genetics ; Mice ; Mice, Inbred BALB C ; Staphylococcus aureus ; Toxoids
مستخلص: Staphylococcus aureus is a serious pathogen unleashing its virulence through several classes of exotoxins such as hemolysins and enterotoxins. In this study, we designed a novel multi-antigen subunit vaccine which can induce innate, humoral and cellular immune responses. Alpha hemolysin, enterotoxins A and B were selected as protective antigens for combining into a triple antigen chimeric protein (HAB). Immunoinformatics analysis predicted HAB protein as a suitable vaccine candidate for inducing both humoral and cellular immune responses. Tertiary structure of the HAB protein was predicted and validated through computational approaches. Docking studies were performed between the HAB protein and mice TLR2 receptor. Furthermore, we constructed and generated recombinant HAB (r-HAB) protein in E. coli and studied its toxicity, immunogenicity and protective efficacy in a mouse model. Triple antigen chimeric protein (r-HAB) was found to be highly immunogenic in mouse as the anti-r-HAB hyperimmune serum was strongly reactive to all three native exotoxins on Western blot. In vitro toxin neutralization assay using anti-r-HAB antibodies demonstrated > 75% neutralization of toxins on RAW 264.7 cell line. Active immunization with r-HAB toxoid gave ~ 83% protection against 2 × lethal dosage of secreted exotoxins. The protection was mediated by induction of strong antibody responses that neutralized the toxins. Passive immunization with anti-r-HAB antibodies gave ~ 50% protection from lethal challenge. In conclusion, in vitro and in vivo testing of r-HAB found the molecule to be nontoxic, highly immunogenic and induced excellent protection towards native toxins in actively immunized and partial protection to passively immunized mice groups. KEY POINTS: • HAB protein was computationally designed to induce humoral and cellular responses. • r-HAB protein was found to be nontoxic, immunogenic and protective in mouse model. • r-HAB conferred protection against lethal challenge in active and passive immunization.
(© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Adhikari RP, Karauzum H, Sarwar J, Abaandou L, Mahmoudieh M, Boroun AR, Vu H, Nguyen T, Devi VS, Shulenin S, Warfield KL, Aman MJ (2012) Novel structurally designed vaccine for S. aureus α-hemolysin: protection against bacteremia and pneumonia. PloS one 7(6):e38567. https://doi.org/10.1371/journal.pone.0038567. (PMID: 10.1371/journal.pone.0038567227016683368876)
Adhikari RP, Thompson CD, Aman MJ, Lee JC (2016) Protective efficacy of a novel alpha hemolysin subunit vaccine (AT62) against Staphylococcus aureus skin and soft tissue infections. Vaccine 34(50):6402–6407. https://doi.org/10.1016/j.vaccine.2016.09.061. (PMID: 10.1016/j.vaccine.2016.09.061278471745130608)
Afley P, Dohre SK, Prasad GBKS, Kumar S (2015) Prediction of T cell epitopes of Brucella abortus and evaluation of their protective role in mice. Appl Microbiol Biotechnol 99(18):7625–7637. https://doi.org/10.1007/s00253-015-6787-7. (PMID: 10.1007/s00253-015-6787-726150246)
Andersen PH, Nielsen M, Lund O (2006) Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Sci 15(11):2558–2567. https://doi.org/10.1110/ps.062405906. (PMID: 10.1110/ps.062405906)
Begier E, Seiden DJ, Patton M, Zito E, Severs J, Cooper D, Eiden J, Gruber WC, Jansen KU, Anderson AS, Gurtman A (2017) SA4Ag, a 4-antigen Staphylococcus aureus vaccine, rapidly induces high levels of bacteria-killing antibodies. Vaccine 35(8):1132–1139. https://doi.org/10.1016/j.vaccine.2017.01.024. (PMID: 10.1016/j.vaccine.2017.01.02428143674)
Branco I, Choupina A (2021) Bioinformatics: new tools and applications in life science and personalized medicine. Appl Microbiol Biotechnol 105:937–951. https://doi.org/10.1007/s00253-020-11056-2. (PMID: 10.1007/s00253-020-11056-233404829)
BubeckWardenburg J, Palazzolo-Ballance AM, Otto M, Schneewind O, DeLeo FR (2008) Panton-Valentine leukocidin is not a virulence determinant in murine models of community-associated methicillin-resistant Staphylococcus aureus disease. J Infect Dis 198(8):1166–1170. https://doi.org/10.1086/592053. (PMID: 10.1086/592053)
Dinges MM, Orwin PM, Schlievert PM (2000) Exotoxins of Staphylococcus aureus. Clin Microbiol Rev 13:16–34. https://doi.org/10.1128/CMR.13.1.16. (PMID: 10.1128/CMR.13.1.161062748988931)
Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics 8:4. https://doi.org/10.1186/1471-2105-8-4. (PMID: 10.1186/1471-2105-8-4172072711780059)
Engvall E, Perlmann P (1972) Enzyme-linked immunosorbent assay Elisa. 3. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes. J Immunol 109(1):129–135. (PMID: 4113792)
Fowler VG Jr, Proctor RA (2014) Where does a Staphylococcus aureus vaccine stand? Clin Microbiol Infect 20:66–75. https://doi.org/10.1111/1469-0691.12570. (PMID: 10.1111/1469-0691.12570244763154067250)
Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: The proteomics protocols handbook. Humana press, New Jersey, pp 571–607. https://doi.org/10.1385/1-59259-890-0:571.
Gill. (2013). S. aureus genomic DNA isolation. OpenWetWare. https://openwetware.org/wiki/Gill:S._aureus_genomic_DNA_isolation.
Hajialibeigi A, Amani J, Gargari SLM (2021) Identification and evaluation of novel vaccine candidates against Shigella flexneri through reverse vaccinology approach. Appl Microbiol Biotechnol 105(3):1159–1173. (PMID: 10.1007/s00253-020-11054-4)
He Y, Sun Y, Ren Y, Qiao L, Guo R, Du J, Zhu X, Liu Y, Lin J (2019) The T cell activating properties and antitumour activity of Staphylococcal Enterotoxin-like Q. Med Microbiol Immunol 208(6):781–792. https://doi.org/10.1007/s00430-019-00614-9. (PMID: 10.1007/s00430-019-00614-931187242)
Hemmadi V, Biswas M (2021) An overview of moonlighting proteins in Staphylococcus aureus infection. Arch Microbiol 203:481–498. https://doi.org/10.1007/s00203-020-02071-y. (PMID: 10.1007/s00203-020-02071-y33048189)
Jespersen MC, Peters B, Nielsen M, Marcatili P (2017) BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res 45(W1):W24–W29. https://doi.org/10.1093/nar/gkx346. (PMID: 10.1093/nar/gkx346284723565570230)
Kailasan S, Kort T, Mukherjee I, Liao GC, Kanipakala T, Williston N, Ganjbaksh N, Venkatasubramaniam A, Holtsberg FW, Karauzum H, Adhikari RP, Aman MJ (2019) Rational design of toxoid vaccine candidates for Staphylococcus aureus Leukocidin AB (LukAB). Toxins 11(6):339. https://doi.org/10.3390/toxins11060339. (PMID: 10.3390/toxins110603396628420)
Källberg M, Margaryan G, Wang S, Ma J, Xu J (2014) RaptorX server: a resource for template-based protein structure modeling. Methods Mol Biol 1137:17–27. https://doi.org/10.1007/978-1-4939-0366-5_2. (PMID: 10.1007/978-1-4939-0366-5_224573471)
Kennedy AD, Wardenburg JB, Gardner DJ, Long D, Whitney AR, Braughton KR, Schneewind O, DeLeo FR (2010) Targeting of alpha-hemolysin by active or passive immunization decreases severity of USA300 skin infection in a mouse model. J Infect Dis 202(7):1050–1058. https://doi.org/10.1086/656043. (PMID: 10.1086/65604320726702)
Klausberger M, Leneva IA, Falynskova IN, Vasiliev K, Poddubikov AV, Lindner C, Kartaschova NP, Svitich OA, Stukova M, GrabherrM E, A, (2019) The potential of influenza HA-specific immunity in mitigating lethality of post-influenza pneumococcal infections. Vaccines 7(4):187. https://doi.org/10.3390/vaccines7040187. (PMID: 10.3390/vaccines70401876963476)
Ko J, Park H, Heo L, Seok C (2012) GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res 40:W294–W297. https://doi.org/10.1093/nar/gks493. (PMID: 10.1093/nar/gks493226490603394311)
Kolla HB, Tirumalasetty C, Sreerama K (2021) Ayyagari VS (2021) An immunoinformatics approach for the design of a multi-epitope vaccine targeting super antigen TSST-1 of Staphylococcus aureus. J Genet EngBiotechnol 19:69. https://doi.org/10.1186/s43141-021-00160-z. (PMID: 10.1186/s43141-021-00160-z)
Kota RK, Reddy PN, Sreerama K (2020) Application of IgY antibodies against staphylococcal protein A (SpA) of Staphylococcus aureus for detection and prophylactic functions. Appl Microbiol Biotechnol 104(21):9387–9398. https://doi.org/10.1007/s00253-020-10912-5. (PMID: 10.1007/s00253-020-10912-532960294)
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275. (PMID: 10.1016/S0021-9258(19)52451-6)
Narita K, Asano K, Nakane A (2017) IL-17A plays an important role in protection induced by vaccination with fibronectin-binding domain of fibronectin-binding protein A against Staphylococcus aureus infection. Med Microbiol Immunol 206(3):225–234. https://doi.org/10.1007/s00430-017-0499-9. (PMID: 10.1007/s00430-017-0499-928378247)
Pinchuk IV, Beswick EJ, Reyes VE (2010) Staphylococcal Enterotoxins Toxins 2(8):2177–2197. https://doi.org/10.3390/toxins2082177. (PMID: 10.3390/toxins208217722069679)
Reddy PN, Paul S, Sripathy MH, Batra HV (2015) Evaluation of recombinant SEA-TSST fusion toxoid for protection against superantigen induced toxicity in mouse model. Toxicon 103:106–113. https://doi.org/10.1016/j.toxicon.2015.06.008. (PMID: 10.1016/j.toxicon.2015.06.00826091873)
Reddy PN, Srirama K, Dirisala VR (2017) An update on clinical burden, diagnostic tools, and therapeutic options of Staphylococcus aureus. Infect Dis: Res Treat 10:1179916117703999. https://doi.org/10.1177/1179916117703999. (PMID: 10.1177/1179916117703999)
Reynisson B, Barra C, Kaabinejadian S, Hildebrand WH, Peters B, Nielsen M (2020) Improved prediction of MHC II antigen presentation through integration and motif deconvolution of mass spectrometry MHC eluted ligand data. J Proteome Res 19(6):2304–2315. https://doi.org/10.1021/acs.jproteome.9b00874. (PMID: 10.1021/acs.jproteome.9b0087432308001)
Shylaja R, Thakasi DKK, Murali HS, Reddy KPN, Batra HV (2012) Application of a chimeric protein construct having enterotoxin B and toxic shock syndrome toxin domains of S. aureus in immunodiagnostics. Indian J Microbiol 5(3):449–455. https://doi.org/10.1007/s12088-012-0269-8. (PMID: 10.1007/s12088-012-0269-8)
Singh V, Phukan UJ (2019) Interaction of host and Staphylococcus aureus protease-system regulates virulence and pathogenicity. Med Microbiol Immunol 208(5):585–607. https://doi.org/10.1007/s00430-018-0573-y. (PMID: 10.1007/s00430-018-0573-y30483863)
Stranzl T, Larsen MV, Lundegaard C, Nielsen M (2010) NetCTLpan: pan-specific MHC class I pathway epitope predictions. Immunogenetics 62(6):357–368. https://doi.org/10.1007/s00251-010-0441-4. (PMID: 10.1007/s00251-010-0441-4203797102875469)
Tovchigrechko A, Vakser IA (2006) GRAMM-X public web server for protein-protein docking. Nucleic Acids Res 34:W310–W314. https://doi.org/10.1093/nar/gkl206. (PMID: 10.1093/nar/gkl206168450161538913)
Uppalapati SR, Kingston JJ, Murali HS, Batra HV (2012) Generation and characterization of an inter-generic bivalent alpha domain fusion protein αCS from Clostridium perfringens and Staphylococcus aureus for concurrent diagnosis and therapeutic applications. J Appl Microbiol 113(2):448–458. https://doi.org/10.1111/j.1365-2672.2012.05333.x. (PMID: 10.1111/j.1365-2672.2012.05333.x22563989)
Uppalapati SR, Kingston JJ, Murali HS, Batra HV (2014) Heterologous protection against alpha toxins of Clostridium perfringens and Staphylococcus aureus induced by binding domain recombinant chimeric protein. Vaccine 32(25):3075–3081. https://doi.org/10.1016/j.vaccine.2014.03.021. (PMID: 10.1016/j.vaccine.2014.03.02124699467)
Vakser IA (2014) Protein-protein docking: from interaction to interactome. Biophys J 107(8):1785–1793. https://doi.org/10.1016/j.bpj.2014.08.033. (PMID: 10.1016/j.bpj.2014.08.033254181594213718)
Vangone A, Spinelli R, Scarano V, Cavallo L, Oliva R (2011) COCOMAPS: a web application to analyze and visualize contacts at the interface of biomolecular complexes. Bioinformatics 27(20):2915–2916. https://doi.org/10.1093/bioinformatics/btr484. (PMID: 10.1093/bioinformatics/btr48421873642)
Wardenburg JB, Schneewind O (2008) Vaccine protection against Staphylococcus aureus pneumonia. J Exp Med 205(2):287–294. https://doi.org/10.1084/jem.20072208. (PMID: 10.1084/jem.200722082271014)
Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, Nouwen JL (2005) The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis 5(12):751–762. https://doi.org/10.1016/S1473-3099(05)70295-4. (PMID: 10.1016/S1473-3099(05)70295-416310147)
Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids 35:W407–W410. https://doi.org/10.1093/nar/gkm290. (PMID: 10.1093/nar/gkm290)
Xue LC, Rodrigues JP, Kastritis PL, Bonvin AM, Vangone A (2016) PRODIGY: a web server for predicting the binding affinity of protein-protein complexes. Bioinformatics 32(23):3676–3678. https://doi.org/10.1093/bioinformatics/btw514. (PMID: 10.1093/bioinformatics/btw51427503228)
Zhang GL, Srinivasan KN, Veeramani A, August JT, Brusic V (2005) PREDBALB/c: a system for the prediction of peptide binding to H2d molecules, a haplotype of the BALB/c mouse. Nucleic Acids Res 33:W180–W183. https://doi.org/10.1093/nar/gki479. (PMID: 10.1093/nar/gki479159804501160239)
Zhao N, Cheng D, Jian Y, Liu Y, Liu J, Huang Q, He L, Wang H, Miao F, Li M, Liu Q (2021) Molecular characteristics of Staphylococcus aureus isolates colonizing human nares and skin. Med Micro Ecol 7:100031. https://doi.org/10.1016/j.medmic.2020.100031. (PMID: 10.1016/j.medmic.2020.100031)
معلومات مُعتمدة: DST/INSPIRE/04/2017/000565 Department of Science and Technology, Ministry of Science and Technology
فهرسة مساهمة: Keywords: Alpha hemolysin; Enterotoxin A; Enterotoxin B; Immunoinformatics; Lethal challenge; Staphylococcus aureus; Subunit vaccine
المشرفين على المادة: 0 (Antibodies, Bacterial)
0 (Bacterial Toxins)
0 (Enterotoxins)
0 (Toxoids)
تواريخ الأحداث: Date Created: 20211005 Date Completed: 20211102 Latest Revision: 20211102
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC8490849
DOI: 10.1007/s00253-021-11609-z
PMID: 34609523
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-0614
DOI:10.1007/s00253-021-11609-z