دورية أكاديمية

A Systematic Strategy to Find Potential Therapeutic Targets for Pseudomonas aeruginosa Using Integrated Computational Models.

التفاصيل البيبلوغرافية
العنوان: A Systematic Strategy to Find Potential Therapeutic Targets for Pseudomonas aeruginosa Using Integrated Computational Models.
المؤلفون: Medeiros Filho F; Programa de Computação Científica, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil., do Nascimento APB; Programa de Computação Científica, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil., Costa MOCE; Laboratório Nacional de Computação Científica, Petrópolis, Brazil., Merigueti TC; Programa de Computação Científica, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil., de Menezes MA; Instituto de Física, Universidade Federal Fluminense, Niterói, Brazil., Nicolás MF; Laboratório Nacional de Computação Científica, Petrópolis, Brazil., Dos Santos MT; Laboratório Nacional de Computação Científica, Petrópolis, Brazil., Carvalho-Assef APD; Laboratório de Pesquisa Em Infecção Hospitalar, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil., da Silva FAB; Programa de Computação Científica, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
المصدر: Frontiers in molecular biosciences [Front Mol Biosci] 2021 Sep 20; Vol. 8, pp. 728129. Date of Electronic Publication: 2021 Sep 20 (Print Publication: 2021).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Frontiers Media S.A Country of Publication: Switzerland NLM ID: 101653173 Publication Model: eCollection Cited Medium: Print ISSN: 2296-889X (Print) Linking ISSN: 2296889X NLM ISO Abbreviation: Front Mol Biosci Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Lausanne : Frontiers Media S.A., [2014]-
مستخلص: Pseudomonas aeruginosa is an opportunistic human pathogen that has been a constant global health problem due to its ability to cause infection at different body sites and its resistance to a broad spectrum of clinically available antibiotics. The World Health Organization classified multidrug-resistant Pseudomonas aeruginosa among the top-ranked organisms that require urgent research and development of effective therapeutic options. Several approaches have been taken to achieve these goals, but they all depend on discovering potential drug targets. The large amount of data obtained from sequencing technologies has been used to create computational models of organisms, which provide a powerful tool for better understanding their biological behavior. In the present work, we applied a method to integrate transcriptome data with genome-scale metabolic networks of Pseudomonas aeruginosa . We submitted both metabolic and integrated models to dynamic simulations and compared their performance with published in vitro growth curves. In addition, we used these models to identify potential therapeutic targets and compared the results to analyze the assumption that computational models enriched with biological measurements can provide more selective and (or) specific predictions. Our results demonstrate that dynamic simulations from integrated models result in more accurate growth curves and flux distribution more coherent with biological observations. Moreover, identifying drug targets from integrated models is more selective as the predicted genes were a subset of those found in the metabolic models. Our analysis resulted in the identification of 26 non-host homologous targets. Among them, we highlighted five top-ranked genes based on lesser conservation with the human microbiome. Overall, some of the genes identified in this work have already been proposed by different approaches and (or) are already investigated as targets to antimicrobial compounds, reinforcing the benefit of using integrated models as a starting point to selecting biologically relevant therapeutic targets.
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
(Copyright © 2021 Medeiros Filho, Nascimento, Costa, Merigueti, Menezes, Nicolás, Santos, Carvalho-Assef and Silva.)
References: ACS Chem Biol. 2013 Feb 15;8(2):387-96. (PMID: 23138692)
Nat Biotechnol. 2019 Aug;37(8):907-915. (PMID: 31375807)
Sci Rep. 2020 May 26;10(1):8695. (PMID: 32457521)
Antimicrob Agents Chemother. 1998 Feb;42(2):394-8. (PMID: 9527792)
PLoS Pathog. 2013;9(9):e1003582. (PMID: 24039572)
J Biomol Struct Dyn. 2021 May;39(8):2945-2958. (PMID: 32306850)
Biochem Soc Trans. 2020 Oct 30;48(5):1889-1903. (PMID: 32940659)
Curr Drug Discov Technol. 2017;14(3):156-168. (PMID: 28359232)
Nat Protoc. 2011 Aug 04;6(9):1290-307. (PMID: 21886097)
Nature. 2012 Jun 13;486(7402):207-14. (PMID: 22699609)
J Biol Chem. 2009 Oct 23;284(43):29526-35. (PMID: 19679654)
Bioinformatics. 2014 Apr 1;30(7):923-30. (PMID: 24227677)
J Biol Chem. 2021 Jan-Jun;296:100658. (PMID: 33857480)
BMC Syst Biol. 2017 Dec 21;11(Suppl 7):134. (PMID: 29322933)
Nat Rev Drug Discov. 2019 Aug;18(8):629-650. (PMID: 31073243)
J Bacteriol. 2010 Oct;192(20):5534-48. (PMID: 20709898)
J Bacteriol. 2010 Jan;192(1):280-5. (PMID: 19880602)
FEBS J. 2020 Jan;287(2):386-400. (PMID: 31330085)
Sci Rep. 2017 Jun 16;7(1):3706. (PMID: 28623298)
PLoS One. 2012;7(12):e51732. (PMID: 23240059)
Mol Biosyst. 2007 Jul;3(7):458-65. (PMID: 17579770)
Science. 2007 Jun 22;316(5832):1759-61. (PMID: 17588934)
Trends Microbiol. 2012 Mar;20(3):113-23. (PMID: 22300758)
Theory Biosci. 2012 Dec;131(4):281-5. (PMID: 22872506)
Antimicrob Agents Chemother. 2002 May;46(5):1246-52. (PMID: 11959552)
Front Physiol. 2012 Aug 06;3:299. (PMID: 22934050)
Nature. 2012 Jun 13;486(7402):215-21. (PMID: 22699610)
Bioinformatics. 2014 Aug 1;30(15):2114-20. (PMID: 24695404)
Chem Biol. 2014 Nov 20;21(11):1423-32. (PMID: 25442374)
Microbiology (Reading). 2010 Apr;156(Pt 4):1201-1210. (PMID: 20093293)
Biochim Biophys Acta. 2001 Feb 9;1545(1-2):67-77. (PMID: 11342032)
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013 Oct;69(Pt 10):1084-8. (PMID: 24100553)
Appl Microbiol Biotechnol. 2012 Mar;93(5):2109-24. (PMID: 21881893)
mBio. 2020 Mar 17;11(2):. (PMID: 32184246)
Antimicrob Agents Chemother. 2003 Jun;47(6):1784-9. (PMID: 12760849)
SLAS Discov. 2018 Jan;23(1):65-75. (PMID: 28745975)
Chem Biol. 2012 Dec 21;19(12):1499-500. (PMID: 23261593)
Mol Biosyst. 2013 Feb 2;9(2):167-74. (PMID: 23247105)
FEBS Lett. 2012 Oct 19;586(20):3710-5. (PMID: 22982109)
ISME J. 2021 May 24;:. (PMID: 34031546)
Bacteriol Rev. 1943 Dec;7(4):175-262. (PMID: 16350088)
Bioorg Med Chem Lett. 2012 Jan 15;22(2):907-11. (PMID: 22204912)
Biochem J. 1966 Apr;99(1):1-11. (PMID: 5337756)
PLoS Comput Biol. 2009 Aug;5(8):e1000489. (PMID: 19714220)
J Bacteriol. 1980 Aug;143(2):720-5. (PMID: 7009561)
BMC Biotechnol. 2013 Oct 29;13:93. (PMID: 24168623)
Drug Des Discov. 2003;18(2-3):91-9. (PMID: 14675946)
Gigascience. 2018 Apr 1;7(4):. (PMID: 29688451)
Biochemistry. 2017 Oct 17;56(41):5539-5549. (PMID: 28985053)
Chem Biol. 2012 Dec 21;19(12):1556-67. (PMID: 23261599)
Sci Rep. 2018 Jul 17;8(1):10755. (PMID: 30018343)
J Bacteriol. 2008 Apr;190(8):2790-803. (PMID: 18192387)
Nature. 2000 Aug 31;406(6799):959-64. (PMID: 10984043)
J Antibiot (Tokyo). 2021 Feb;74(2):95-104. (PMID: 32901119)
Curr Protein Pept Sci. 2003 Feb;4(1):21-9. (PMID: 12570782)
Mini Rev Med Chem. 2015;15(1):41-51. (PMID: 25694083)
Cell Chem Biol. 2017 Feb 16;24(2):195-206. (PMID: 28111098)
PLoS One. 2020 Jan 24;15(1):e0227977. (PMID: 31978122)
J Biomol Struct Dyn. 2019 Mar;37(5):1326-1345. (PMID: 29606084)
Front Genet. 2019 Jul 04;10:633. (PMID: 31333719)
Bioinformatics. 2017 Apr 1;33(7):1057-1063. (PMID: 28065897)
Proc Natl Acad Sci U S A. 2019 May 14;116(20):10072-10080. (PMID: 31036669)
Proc Natl Acad Sci U S A. 2015 Mar 31;112(13):4110-5. (PMID: 25775563)
J Bacteriol. 1997 Sep;179(17):5326-32. (PMID: 9286984)
PLoS One. 2017 Oct 18;12(10):e0186801. (PMID: 29045498)
Proc Natl Acad Sci U S A. 2010 Oct 12;107(41):17845-50. (PMID: 20876091)
J Biol Chem. 2001 Dec 14;276(50):47387-93. (PMID: 11584022)
Curr Opin Biotechnol. 2010 Aug;21(4):502-10. (PMID: 20692823)
Front Bioeng Biotechnol. 2020 Jan 31;8:34. (PMID: 32083072)
Int J Mol Sci. 2021 Feb 10;22(4):. (PMID: 33578647)
Metab Eng. 2003 Oct;5(4):264-76. (PMID: 14642354)
Nat Biotechnol. 2010 Mar;28(3):245-8. (PMID: 20212490)
PLoS Comput Biol. 2015 Feb 23;11(2):e1004085. (PMID: 25706687)
Futur J Pharm Sci. 2021;7(1):56. (PMID: 33686369)
Proc Natl Acad Sci U S A. 2015 Apr 21;112(16):5189-94. (PMID: 25848053)
Eukaryot Cell. 2002 Oct;1(5):657-62. (PMID: 12455685)
Mol Microbiol. 2007 Nov;66(3):622-32. (PMID: 17877713)
Front Cell Infect Microbiol. 2019 May 24;9:161. (PMID: 31179245)
Carbohydr Res. 2005 Mar 21;340(4):529-37. (PMID: 15721322)
ACS Chem Biol. 2019 Dec 20;14(12):2663-2671. (PMID: 31675206)
Genes Dis. 2019 Apr 17;6(2):109-119. (PMID: 31194018)
Microbiology (Reading). 2009 Oct;155(Pt 10):3166-3175. (PMID: 19684068)
FEMS Microbiol Rev. 2011 Jul;35(4):652-80. (PMID: 21361996)
Clin Microbiol Rev. 2009 Oct;22(4):582-610. (PMID: 19822890)
Org Biomol Chem. 2015 Mar 21;13(11):3347-50. (PMID: 25655582)
J Bacteriol. 1976 Apr;126(1):400-9. (PMID: 816777)
Virulence. 2014;5(8):786-93. (PMID: 25483775)
Innate Immun. 2009 Oct;15(5):261-312. (PMID: 19710102)
فهرسة مساهمة: Keywords: Pseudomonas aeruginosa; integrated model; metabolic network; therapeutic target; transcriptome data
تواريخ الأحداث: Date Created: 20211007 Latest Revision: 20211008
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC8488468
DOI: 10.3389/fmolb.2021.728129
PMID: 34616771
قاعدة البيانات: MEDLINE
الوصف
تدمد:2296-889X
DOI:10.3389/fmolb.2021.728129