دورية أكاديمية

Thermostable trypsin-like protease by Penicillium roqueforti secreted in cocoa shell fermentation: Production optimization, characterization, and application in milk clotting.

التفاصيل البيبلوغرافية
العنوان: Thermostable trypsin-like protease by Penicillium roqueforti secreted in cocoa shell fermentation: Production optimization, characterization, and application in milk clotting.
المؤلفون: Nogueira LS; Department of Rural and Animal Technology, State University of Southwest Bahia, Itapetinga, Bahia, Brazil., Tavares IMC; Department of Rural and Animal Technology, State University of Southwest Bahia, Itapetinga, Bahia, Brazil., Santana NB; Department of Rural and Animal Technology, State University of Southwest Bahia, Itapetinga, Bahia, Brazil., Ferrão SPB; Department of Rural and Animal Technology, State University of Southwest Bahia, Itapetinga, Bahia, Brazil., Teixeira JM; Department of Biological Sciences, State University of Santa Cruz, Ilhéus, Bahia, Brazil., Costa FS; Department of Chemistry, Federal University of Paraná, Curitiba, Paraná, Brazil., Silva TP; Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Alagoas, Brazil., Pereira HJV; Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Alagoas, Brazil., Irfan M; Department of Biotechnology, University of Sargodha, Sargodha, Punjab, Pakistan., Bilal M; School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China., de Oliveira JR; Department of Exact Sciences and Technology, State University of Santa Cruz, Ilhéus, Bahia, Brazil., Franco M; Department of Exact Sciences and Technology, State University of Santa Cruz, Ilhéus, Bahia, Brazil.
المصدر: Biotechnology and applied biochemistry [Biotechnol Appl Biochem] 2022 Oct; Vol. 69 (5), pp. 2069-2080. Date of Electronic Publication: 2021 Oct 19.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: United States NLM ID: 8609465 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1470-8744 (Electronic) Linking ISSN: 08854513 NLM ISO Abbreviation: Biotechnol Appl Biochem Subsets: MEDLINE
أسماء مطبوعة: Publication: Jan. 2011- : Malden : Wiley-Blackwell
Original Publication: San Diego : Academic Press, [cl986]-
مواضيع طبية MeSH: Milk* , Cheese*, Animals ; Fermentation ; Trypsin ; Hydrogen-Ion Concentration
مستخلص: The increased demand for cheese and the limited availability of calf rennet justifies the search for milk-clotting enzymes from alternative sources. Trypsin-like protease by Penicillium roqueforti was produced by solid-state fermentation using cocoa shell waste as substrate. The production of a crude enzyme extract that is rich in this enzyme was optimized using a Doehlert-type multivariate experimental design. The biochemical characterization showed that the enzyme has excellent activity and stability at alkaline pH (10-12) and an optimum temperature of 80°C, being stable at temperatures above 60°C. Enzymatic activity was maximized in the presence of Na + (192%), Co 2+ (187%), methanol (153%), ethanol (141%), and hexane (128%). Considering the biochemical characteristics obtained and the milk coagulation activity, trypsin-like protease can be applied in the food industry, such as in milk clotting and in the fabrication of cheeses.
(© 2021 International Union of Biochemistry and Molecular Biology, Inc.)
References: Sharma KM, Kumar R, Panwar S, Kumar A. Microbial alkaline proteases: optimization of production parameters and their properties. J Genet Eng Biotechnol. 2017;15:115-26. https://doi.org/10.1016/j.jgeb.2017.02.001.
Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev. 1998;62:597-635.
Naveed M, Nadeem F, Mehmood T, Bilal M, Anwar Z, Amjad F. Protease - a versatile and ecofriendly biocatalyst with multi-industrial applications: an updated review. Catal Lett. 2020;151:307-23. https://doi.org/10.1007/s10562-020-03316-7.
Zheng L, Yu X, Wei C, Qiu L, Yu C, Xing Q, et al. Production and characterization of a novel alkaline protease from a newly isolated Neurospora crassa through solid-state fermentation. LWT. 2020;122:108990. https://doi.org/10.1016/j.lwt.2019.108990.
Matkawala F, Nighojkar S, Kumar A, Nighojkar A. Enhanced production of alkaline protease by Neocosmospora sp. N1 using custard apple seed powder as inducer and its application for stain removal and dehairing. Biocatal Agric Biotechnol. 2019;21:101310. https://doi.org/10.1016/j.bcab.2019.101310.
David A, Chauhan PS, Kumar A, Angural S, Kumar D, Puri N, et al. Coproduction of protease and mannanase from Bacillus nealsonii PN-11 in solid state fermentation and their combined application as detergent additives. Int J Biol Macromol. 2018;108:1176-84. https://doi.org/10.1016/j.ijbiomac.2017.09.037.
Elhoul MB, Jaouadi NZ, Rekik H, Bejar W, Boulkour Touioui S, Hmidi M, et al. A novel detergent-stable solvent-tolerant serine thiol alkaline protease from Streptomyces koyangensis TN650. Int J Biol Macromol. 2015;79:871-82.
Ray A. Protease enzyme-potential industrial scope. Int J Technol. 2012;2:1-5.
Zhao X, Cai M, Yang Z-J, Luo T-Q, Sarwar A, Megrous S, et al. Purification and characterization of a novel milk-clotting enzyme produced by Bacillus amyloliquefaciens GSBa-1. Eur Food Res Technol. 2019;245:2447-57. https://doi.org/10.1007/s00217-019-03361-6.
Yin H, Zhang X, Huang J. Study on enzymatic hydrolysis of soybean β-conglycinin using alkaline protease from Bacillus subtilis ACCC 01746 and antigenicity of its hydrolysates. Grain Oil Sci Technol. 2021;4:18-25. https://doi.org/10.1016/j.gaost.2021.08.001.
Heredia-Sandoval NG, Valencia-Tapia MY, Barca AMC, Islas-Rubio AR. Microbial proteases in baked goods: modification of gluten and effects on immunogenicity and product quality. Foods. 2016;5:59. https://doi.org/10.3390/foods5030059.
Oliveira CF, Corrêa APF, Coletto D, Daroit DJ, Cladera-Olivera F, Brandelli A. Soy protein hydrolysis with microbial protease to improve antioxidant and functional properties. J Food Sci Technol. 2015;52:2668-78. https://doi.org/10.1007/s13197-014-1317-7.
He H, Chen X, Li J, Zhang Y, Peiji G. Taste improvement of refrigerated meat treated with cold-adapted protease. Food Chem. 2004;84:307-11. https://doi.org/10.1016/S0308-8146(03)00242-5.
Claverie-Martìn F, Vega-Hernàndez MC. Aspartic proteases used in cheese making. In: Industrial enzymes. Dordrecht: Springer; 2007. p. 207-19.
Da Silva RR, Souto TB, Gonsales Da Rosa N, De Oliveira LCG, Juliano MA, Juliano L, et al. Evaluation of the milk clotting properties of an aspartic peptidase secreted by Rhizopus microsporus. Prep Biochem Biotechnol. 2020;50:226-33. https://doi.org/10.1080/10826068.2019.1683861.
Fox PF, Guinee TP, Cogan TM, McSweeney PLH. Enzymatic Coagulation of Milk. In: Fundamentals of cheese science. Boston, MA: Springer; 2017. p. 185-229.
Zhang Y, Xia Y, Lai PF-H, Liu X, Xiong Z, Liu J, et al. Fermentation conditions of serine/alkaline milk-clotting enzyme production by newly isolated Bacillus licheniformis BL312. Ann Microbiol. 2019;69:1289-300. https://doi.org/10.1007/s13213-019-01513-3.
Afsharnezhad M, Shahangian SS, Sariri R. A novel milk-clotting cysteine protease from Ficus johannis: purification and characterization. Int J Biol Macromol. 2019;121:173-82. https://doi.org/10.1016/j.ijbiomac.2018.10.006.
Shellomith ASS, Preetha B. Production of milk clotting enzyme by Penicillium camemberti using whey medium. IOSR J Biotechnol Biochem. 2018;4:33-40. https://doi.org/10.20902/ijctr.2018.110233.
de Castro RJS, Ohara A, Nishide TG, Bagagli MP, Gonçalves Dias FF, Sato HH. A versatile system based on substrate formulation using agroindustrial wastes for protease production by Aspergillus niger under solid state fermentation. Biocatal Agric Biotechnol. 2015;4:678-84. https://doi.org/10.1016/j.bcab.2015.08.010.
Hsiao NW, Chen Y, Kuan YC, Lee Y-C, Lee S-K, Chan H-H, et al. Purification and characterization of an aspartic protease from the Rhizopus Oryzae protease extract, peptidase R. Electron J Biotechnol. 2014;17:89-94. https://doi.org/10.1016/j.ejbt.2014.02.002.
Gurumallesh P, Alagu K, Ramakrishnan B, Muthusamy S. A systematic reconsideration on proteases. Int J Biol Macromol. 2019;128:254-67. https://doi.org/10.1016/j.ijbiomac.2019.01.081.
Chinmayee CV, Vidya C, Rani A, Singh SA. Production of highly active fungal milk-clotting enzyme by solid-state fermentation. Prep Biochem Biotechnol. 2019;49:858-67. https://doi.org/10.1080/10826068.2019.1630647.
de Castro RJS, Nishide TG, Sato HH. Production and biochemical properties of proteases secreted by Aspergillus niger under solid state fermentation in response to different agroindustrial substrates. Biocatal Agric Biotechnol. 2014;3:236-45. https://doi.org/10.1016/j.bcab.2014.06.001.
Marques GL, Dos Santos Reis N, Silva TP, Ferreira MLO, Aguiar-Oliveira E, De Oliveira JR, Franco M. Production and characterisation of xylanase and endoglucanases produced by Penicillium roqueforti ATCC 10110 through the solid-state fermentation of rice husk residue. Waste Biomass Valorization. 2018;9:2061-069. https://doi.org/10.1007/s12649-017-9994-x.
das Neves CAA, de Menezes LHS, Soares GA, dos Santos Reis N, Tavares IMC, Franco M, et al. Production and biochemical characterization of halotolerant β-glucosidase by Penicillium roqueforti ATCC 10110 grown in forage palm under solid-state fermentation. Biomass Convers Biorefinery. 2020. https://doi.org/10.1007/s13399-020-00930-8.
Tavares IMC, Umsza-Guez MA, Martin N, Tobal TM, Boscolo M, Gomes E, et al. The improvement of grape juice quality using Thermomucor Indicae-Seudaticae pectinase. J Food Sci Technol. 2020;57:1565-73. https://doi.org/10.1007/s13197-019-04192-9.
Melnichuk N, Braia MJ, Anselmi PA, Meini M-R, Romanini D. Valorization of two agroindustrial wastes to produce alpha-amylase enzyme from Aspergillus oryzae by solid-state fermentation. Waste Manag. 2020;106:155-61. https://doi.org/10.1016/j.wasman.2020.03.025.
Lessa OA, Reis N dos S, Leite SGF, Gutarra MLE, Souza AO, Gualberto SA, et al. Effect of the solid state fermentation of cocoa shell on the secondary metabolites, antioxidant activity, and fatty acids. Food Sci Biotechnol. 2017;27:107-13. https://doi.org/10.1007/s10068-017-0196-x.
de Menezes LHS, Carneiro LL, Tavares IMC, Santos PH, Pereira Das Chagas T, Mendes AA, et al. Artificial neural network hybridized with a genetic algorithm for optimization of lipase production from Penicillium roqueforti ATCC 10110 in solid-state fermentation. Biocatal Agric Biotechnol. 2021;31:101885. https://doi.org/10.1016/j.bcab.2020.101885.
Nunes N da S, Carneiro LL, de Menezes LHS, De Carvalho MS, Pimentel AB, Silva TP, et al. Simplex-centroid design and artificial neural network-genetic algorithm for the optimization of exoglucanase production by Penicillium Roqueforti ATCC 10110 through solid-state fermentation using a blend of agroindustrial wastes. Bioenergy Res. 2020;13:1130-43. https://doi.org/10.1007/s12155-020-10157-0.
dos Santos TC, dos Santos RN, Silva TP, Bonomo RCF, Aguiar-Oliveira E, De Oliveira JR, et al. Production, optimisation and partial characterisation of enzymes from filamentous fungi using dried forage cactus pear as substrate. Waste Biomass Valorization. 2018;9:571-9. https://doi.org/10.1007/s12649-016-9810-z.
de Almeida Antunes Ferraz JL, Souza LO, de Araújo Fernandes AG, Luiz Ferreira Oliveira M, de Oliveira JR, Franco M. Optimization of the solid-state fermentation conditions and characterization of xylanase produced by Penicillium roqueforti ATCC 10110 using yellow mombin residue (Spondias mombin L.). Chem Eng Commun. 2020;207:31-42. https://doi.org/10.1080/00986445.2019.1572000.
Ferraz JLA, Souza LO, Soares GA, Coutinho JP, De Oliveira JR, Aguiar-Oliveira E, et al. Enzymatic saccharification of lignocellulosic residues using cellulolytic enzyme extract produced by Penicillium roqueforti ATCC 10110 cultivated on residue of yellow mombin fruit. Biores Technol. 2018;248:214-20. https://doi.org/10.1016/j.biortech.2017.06.048.
Silva TP, Souza LO, Reis NS, Assis SA, Ferreira MLO, Oliveira JR, et al. Cultivation of Penicillium roqueforti in cocoa shell to produce and characterize its lipase extract. Rev Mex Ing Quim. 2017;16:745-56.
Soares GA, Alnoch RC, Dias GS, Santos Reis ND, Tavares IMC, Ruiz HA, et al. Production of a fermented solid containing lipases from Penicillium roqueforti ATCC 10110 and its direct employment in organic medium in ethyl oleate synthesis. Biotechnol Appl Biochem. 2021;1:1-16. https://doi.org/10.1002/bab.2202.
Souza LO, de Brito AR, Bonomo RCF, Santana NB, de Almeida Antunes Ferraz JL, Aguiar-Oliveira E, et al. Comparison of the biochemical properties between the xylanases of Thermomyces lanuginosus (Sigma®) and excreted by Penicillium roqueforti ATCC 10110 during the solid state fermentation of sugarcane bagasse. Biocatal Agric Biotechnol. 2018;16:277-84. https://doi.org/10.1016/j.bcab.2018.08.016.
Oliveira PC, de Brito AR, Pimentel AB, Soares GA, Pacheco CSV, Santana NB, et al. Cocoa shell for the production of endoglucanase by Penicillium roqueforti ATCC 10110 in solid state fermentation and biochemical properties. Rev Mex Ing Quim. 2019;18:777-87. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n3/Oliveira.
Junqueira LL, De Brito AR, Franco M, De Assis SA. Partial characterization and immobilization of carboxymethylcellulase from Aspergillus niger produced by solid-state fermentation. Rev Mex Ing Quim. 2019;18:241-50. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n1/Junqueira.
Reis NS, de Santana NB, Tavares IMC. Enzyme extraction by lab-scale hydrodistillation of ginger essential oil (Zingiber officinale Roscoe): chromatographic and micromorphological analyses. Ind Crops Prod. 2020;146:112210. https://doi.org/10.1016/j.indcrop.2020.112210.
Dos N, Lessa OA, Pacheco CSV, Pereira NE, Soares GA, Silva EGP, et al. Cocoa shell as a substrate for obtaining endoglucanase and xylanase from Aspergillus oryzae ATCC 10124. Acta Sci Technol. 2020b;42:e48211. https://doi.org/10.4025/actascitechnol.v42i1.48211.
dos Santos TC, de Brito AR, Bonomo RCF, Pires AJV, Aguiar-Oliveira E, Silva TP, et al. Statistical optimization of culture conditions and characterization for ligninolytic enzymes produced from Rhizopus Sp. using prickly palm cactus husk. Chem Eng Commun. 2017;204:55-63. https://doi.org/10.1080/00986445.2016.1230851.
Carvalho EA, Nunes LV, dos Santos Goes LMS, da Silva EGP, Franco M, Gross E, et al. Peach-palm (Bactris gasipaes Kunth.) waste as substrate for xylanase production by Trichoderma stromaticum AM7. Chem Eng Commun. 2018;205:975-85. https://doi.org/10.1080/00986445.2018.1425208.
Araujo SC, Ramos MRMF, do Espirito Santo EL, de Menezes LHS, de Carvalho MS, de Tavares IMC, et al. Optimization of lipase production by Penicillium roqueforti ATCC 10110 through solid-state fermentation using agro-industrial residue based on a univariate analysis. Prep Biochem Biotechnol. 2021. https://doi.org/10.1080/10826068.2021.1944203.
Ncube T, Moyo NP, Sibanda T. Production of cellulase by solid state fermentation of brewery spent grains using Aspergillus niger FGSC A733. Zimbabwe J Sci Technol. 2015;10:119-27.
Manpreet S, Sawraj S, Sachin D, Pankaj S, Banerjee U. Influence of process parameters on the production of metabolites in solid-state fermentation. Malays J Microbiol. 2005. https://doi.org/10.21161/MJM.120501.
Dos Santos TC, Reis NS, Silva TP, Machado FPP, Bonomo RCF, Franco M. Prickly palm cactus husk as a raw material for production of ligninolytic enzymes by Aspergillus niger. Food Sci Biotechnol. 2016. https://doi.org/10.1007/s10068-016-0031-9.
Roohi KM. Bio-statistical approach for optimization of cold-active α-amylase production by novel psychrotolerant M. foliorum GA2 in solid state fermentation. Biocatal Agric Biotechnol. 2014;3:175-81. https://doi.org/10.1016/j.bcab.2013.09.007.
Almanaa TN, Vijayaraghavan P, Alharbi NS, Kadaikunnan S, Khaled JM, Alyahya SA. Solid state fermentation of amylase production from Bacillus subtilis D19 using agro-residues. J King Saud Univ Sci. 2020;32:1555-61. https://doi.org/10.1016/j.jksus.2019.12.011.
Wehaidy HR, Abdel Wahab WA, Kholif AMM, Elaaser M, Bahgaat WK, Abdel-Naby MA. Statistical optimization of B. subtilis MK775302 milk clotting enzyme production using agro-industrial residues, enzyme characterization and application in cheese manufacture. Biocatal Agric Biotechnol. 2020;25:101589. https://doi.org/10.1016/j.bcab.2020.101589.
Ferreira SLC, dos Santos WNL, Quintella CM, Neto BB, Bosque-Sendra BB. Doehlert matrix: a chemometric tool for analytical chemistry-review. Talanta. 2004;63:1061-7. https://doi.org/10.1016/j.talanta.2004.01.015AOAC(2009) Official Methods of Analysis, 18st Edition, 18th ed. AOAC International, Washington.
AOAC International. Official methods of analysis. 20th ed. Arlington: AOAC International; 2010.
Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911-7. https://doi.org/10.1139/o59-099.
Khantaphant S, Benjakul S. Purification and characterization of trypsin from the pyloric caeca of brownstripe red snapper (Lutjanus vitta). Food Chem. 2010;120:658-64. https://doi.org/10.1016/j.foodchem.2009.09.098.
Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem. 1959;31:426-8. https://doi.org/10.1021/ac60147a030.
Yan T-R, Lin C-L. Purification and characterization of a glucose-tolerant β-glucosidase from Aspergillus niger CCRC 31494. Biosci Biotechnol Biochem. 1997;61:965-70. https://doi.org/10.1271/bbb.61.965.
Arima K, Yu J, Iwasaki S. Milk-clotting enzyme from Mucor pusillus var. Lindt. Methods Enzymol. 1970;19:446-59.
Chun KS, Husseinsyah S, Yeng CM. Effect of green coupling agent from waste oil fatty acid on the properties of polypropylene/cocoa pod husk composites. Polym Bull. 2016;73:3465-84. https://doi.org/10.1007/s00289-016-1682-7.
Okiyama DCG, Navarro SLB, Rodrigues CEC. Cocoa shell and its compounds: applications in the food industry. Trends Food Sci Technol. 2017;63:103-12. https://doi.org/10.1016/j.tifs.2017.03.007.
Novelli PK, Barros MM, Fleuri LF. Novel inexpensive fungi proteases: production by solid state fermentation and characterization. Food Chem. 2016;198:119-24. https://doi.org/10.1016/j.foodchem.2015.11.089.
Thakur N, Kumar A, Sharma A, Bhalla TC, Kumar D. Purification and characterization of alkaline, thermostable and organic solvent stable protease from a mutant of Bacillus sp. Biocatal Agric Biotechnol. 2018;16:217-24. https://doi.org/10.1016/j.bcab.2018.08.005.
Iqbal A, Hakim A, Hossain MS, Rahman MR, Islam K, Azim MF, et al. Partial purification and characterization of serine protease produced through fermentation of organi municipal solid wastes by Serratia marcescens A3 and Pseudomonas putida A2. J Genet Eng Biotechnol. 2018;16:29-37. https://doi.org/10.1016/j.jgeb.2017.10.011.
Barzkar N. Marine microbial alkaline protease: an efficient and essential tool for various industrial applications. Int J Biol Macromol. 2020;161:1216-29. https://doi.org/10.1016/j.ijbiomac.2020.06.072.
Alves MP, Salgado RL, Eller MR, Vidigal PMP, Fernandes De Carvalho A. Characterization of a heat-resistant extracellular protease from Pseudomonas fluorescens 07A shows that low temperature treatments are more effective in deactivating its proteolytic activity. J Dairy Sci. 2016;99:7842-51. https://doi.org/10.3168/jds.2016-11236.
Da Penha França RC, Assis CRD, Santos JF, Torquato RJS, Tanaka AS, Hirata IY, et al. Bovine pancreatic trypsin inhibitor immobilized onto sepharose as a new strategy to purify a thermostable alkaline peptidase from cobia (Rachycentron canadum) processing waste. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1033-1034:210-7. https://doi.org/10.1016/j.jchromb.2016.08.028.
Contesini FJ, de Melo RR, Sato HH. An overview of Bacillus proteases: from production to application. Crit Rev Biotechnol. 2018;38:321-34. https://doi.org/10.1080/07388551.2017.1354354.
Irfan M, Nadeem M, Syed Q. One-factor-at-a-time (OFAT) optimization of xylanase production from Trichoderma viride-IR05 in solid-state fermentation. J Radiat Res Appl Sci. 2014;7:317-26. https://doi.org/10.1016/j.jrras.2014.04.004.
Sarkar GKS. Extraction and characterization of alkaline protease from Streptomyces sp. GS-1 and its application as dehairing agent. Biocatal Agric Biotechnol. 2020;25:101590. https://doi.org/10.1016/j.bcab.2020.101590.
Si JB, Jang EJ, Charalampopoulos D, Wee YJ. Purification and characterization of microbial protease produced extracellularly from Bacillus subtilis FBL-1. Biotechnol Bioprocess Eng. 2018;23:176-82. https://doi.org/10.1007/s12257-017-0495-3.
Abdel Wahab WA, Ahmed SA. Response surface methodology for producton, characterization and application of solvent, salt and alkali-tolerant alkaline protease from isolated fungal strain Aspergillus niger WA 2017. Int J Biol Macromol. 2018;115:447-58. https://doi.org/10.1016/j.ijbiomac.2018.04.041.
Ahmed SA, Wehaidy HR, Ibrahim OA, Abd El Ghani S, El-Hofi MA. Novel milk-clotting enzyme from Bacillus stearothermophilus as a coagulant in UF-white soft cheese. Biocatal Agric Biotechnol. 2016;7:241-9. https://doi.org/10.1016/j.bcab.2016.06.011.
Altinkaynak C, Gulmez C, Atakisi O, Özdemir N. Evaluation of organic-inorganic hybrid nanoflower's enzymatic activity in the presence of different metal ions and organic solvents. Int J Biol Macromol. 2020;164:162-71. https://doi.org/10.1016/j.ijbiomac.2020.07.118.
Vijayaraghavan P, Lazarus S, Vincent SGP. De-hairing protease production by an isolated Bacillus cereus strain AT under solid-state fermentation using cow dung: biosynthesis and properties. Saudi J Biol Sci. 2014;21:27-34. https://doi.org/10.1016/j.sjbs.2013.04.010.
Silva TP, de Albuquerque FS, dos Santos CWV, Franco M, Caetano LC, Pereira HJV. Production, purification, characterization and application of a new halotolerant and thermostable endoglucanase of Botrytis ricini URM 5627. Bioresour Technol. 2018;270:263-9. https://doi.org/10.1016/j.biortech.2018.09.022.
Speranza P, de Carvalho PO, MacEdo GA. Effects of different solid state fermentation substrate on biochemical properties of cutinase from Fusarium sp. J Mol Catal B Enzym. 2011;72:181-6. https://doi.org/10.1016/j.molcatb.2011.06.003.
de Castro Leite Júnior BR, Tribst AAL, Yada RY, Cristianini M. Milk-clotting activity of high pressure processed coagulants: evaluation at different pH and temperatures and pH influence on the stability. Innov Food Sci Emerg Technol. 2018;47:384-9. https://doi.org/10.1016/j.ifset.2018.04.006.
Lemes AC, Pavón Y, Lazzaroni S, Rozycki S, Brandelli A, Kalil SJ. A new milk-clotting enzyme produced by Bacillus sp. P45 applied in cream cheese development. LWT. 2016;66:217-24. https://doi.org/10.1016/j.lwt.2015.10.038.
Qamar SA, Asgher M, Bilal M. Immobilization of alkaline protease from Bacillus brevis using ca-alginate entrapment strategy for improved catalytic stability, silver recovery, and dehairing potentialities. Catal Lett. 2020;150:3572-83. https://doi.org/10.1007/s10562-020-03268-y.
Lekshmi R, Arif Nisha S, Kaleeswaran B, Alfarhan AH. Pomegranate peel is a low-cost substrate for the production of tannase by Bacillus velezensis TA3 under solid state fermentation. J King Saud Univ Sci. 2020;32:1831-7. https://doi.org/10.1016/j.jksus.2020.01.022.
فهرسة مساهمة: Keywords: Doehlert design; biochemical characterization; milk clotting; trypsin-like protease
المشرفين على المادة: EC 3.4.21.4 (Trypsin)
SCR Organism: Penicillium roqueforti
تواريخ الأحداث: Date Created: 20211007 Date Completed: 20221031 Latest Revision: 20221031
رمز التحديث: 20240829
DOI: 10.1002/bab.2268
PMID: 34617635
قاعدة البيانات: MEDLINE
الوصف
تدمد:1470-8744
DOI:10.1002/bab.2268