دورية أكاديمية

In silico analyses and design of a chimeric protein containing epitopes of SpaC, PknG, NanH, and SodC proteins for the control of caseous lymphadenitis.

التفاصيل البيبلوغرافية
العنوان: In silico analyses and design of a chimeric protein containing epitopes of SpaC, PknG, NanH, and SodC proteins for the control of caseous lymphadenitis.
المؤلفون: Silva MTO; Laboratório de Biotecnologia Infecto-Parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas (UFPel), Campus Universitário s/n, Prédio 19, Pelotas, RS, 96010-900, Brazil., de Pinho RB; Laboratório de Biotecnologia Infecto-Parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas (UFPel), Campus Universitário s/n, Prédio 19, Pelotas, RS, 96010-900, Brazil., Bezerra FSB; Laboratório de Biotecnologia Aplicada a Doenças Infecto-Parasitárias, Centro de Ciências Biológicas e da Saúde, UFERSA, Mossoró, RN, Brazil., Scholl NR; Laboratório de Biotecnologia Infecto-Parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas (UFPel), Campus Universitário s/n, Prédio 19, Pelotas, RS, 96010-900, Brazil., Moron LD; Laboratório de Biotecnologia Infecto-Parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas (UFPel), Campus Universitário s/n, Prédio 19, Pelotas, RS, 96010-900, Brazil., Alves MSD; Laboratório de Biotecnologia Infecto-Parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas (UFPel), Campus Universitário s/n, Prédio 19, Pelotas, RS, 96010-900, Brazil., Woloski RDS; Laboratório de Bioinformática e Proteômica, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, RS, 96010-900, Brazil., Kremer FS; Laboratório de Bioinformática e Proteômica, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, RS, 96010-900, Brazil., Borsuk S; Laboratório de Biotecnologia Infecto-Parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas (UFPel), Campus Universitário s/n, Prédio 19, Pelotas, RS, 96010-900, Brazil. sibeleborsuk@gmail.com.
المصدر: Applied microbiology and biotechnology [Appl Microbiol Biotechnol] 2021 Nov; Vol. 105 (21-22), pp. 8277-8286. Date of Electronic Publication: 2021 Oct 08.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer International Country of Publication: Germany NLM ID: 8406612 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0614 (Electronic) Linking ISSN: 01757598 NLM ISO Abbreviation: Appl Microbiol Biotechnol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin ; New York : Springer International, c1984-
مواضيع طبية MeSH: Corynebacterium Infections* , Lymphadenitis*, Animals ; Computer Simulation ; Epitopes/genetics ; Goats ; Mice ; Recombinant Fusion Proteins/genetics ; Sheep
مستخلص: Caseous lymphadenitis (CLA) is an infectious disease that affects goats and sheep causing drastic impacts on milk and meat production and is caused by Corynebacterium pseudotuberculosis. The disease can be prevented through vaccination but currently, vaccines demonstrate limited efficacy consequently leading to a need for the development of new ones. Here, we described the in silico development of a new chimeric protein constructed with epitopes identified from the sequences of the genes nanH, pknG, spaC, and sodC, previously described as potential vaccinal targets against C. pseudotuberculosis. The chimera was expressed, purified, and its immunogenicity was evaluated using sera of immunized mice. Results indicate the chimeric protein was able to stimulate antibody production. Additionally, analysis using serum from naturally infected goats showed that the protein is recognized by sera from these animals, indicating the possibility for using this chimera in new diagnostic methods. KEY POINTS: • The chimera was expressed with 52 kDa and a yield of 7 mg/L after purification. • The chimera was recognized by the sera of animals immunized with this formulation. • Chimera reacted with the serum of goats naturally infected with C. pseudotuberculosis.
(© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Bastos BL, Portela RWD, Dorella FA, Ribeiro D, Seyffert N, de Castro TL, P, Miyoshi A, Oliveira SC, Meyer R, Azevedo V (2012) Corynebacterium pseudotuberculosis: immunological responses in animal models and zoonotic potential. Immunol, J Clin Cell S4:1–15. https://doi.org/10.4172/2155-9899.S4-005. (PMID: 10.4172/2155-9899.S4-005)
Bezerra FSB, de Oliveira Silva MT, de Fátima Silva Rezende A, Sena-Lopes A, de Pinho RB, Seixas FK, CollaresPortela TVRWD, de Carvalho Azevedo VA, Borsuk S (2021) Saponin-adjuvanted recombinant vaccines containing rCP00660, rCP09720 or rCP01850 proteins against Corynebacterium pseudotuberculosis infection in mice. Vaccine 28:2568–2574. https://doi.org/10.1016/j.vaccine.2021.03.062.
da Costa Barnabé NN, Alves JRA, de Farias AEM, Alves FSF, Faccioli-Martins PY, Pinheiro RR, de Azevedo SS, Alves CJ (2020) Assessment of caseous lymphadenitis in goats in a slaughterhouse in the Brazilian semi-arid region and estimates of economic losses due to carcass condemnation. Semin Agrar 41:2655–2668. https://doi.org/10.5433/1679-0359.2020v41n6p2655. (PMID: 10.5433/1679-0359.2020v41n6p2655)
de Oliveira NR, Jorge S, Gomes CK, Rizzi C, Pacce VD, Collares TF, Monte LG, Dellagostin OA (2017) A novel chimeric protein composed of recombinant Mycoplasma hyopneumoniae antigens as a vaccine candidate evaluated in mice. Vet Microbiol 201:146–153. https://doi.org/10.1016/j.vetmic.2017.01.023. (PMID: 10.1016/j.vetmic.2017.01.02328284602)
de Oliveira Silva MT, de Pinho RB, da Rocha Fonseca B, Bezerra FSB, Sousa FSS, Seixas FK, Collares T, Nascimento RJM, Portela RW, Azevedo VAC, Borsuk S (2020) NanH and PknG putative virulence factors as a recombinant subunit immunogen against Corynebacterium pseudotuberculosis infection in mice. Vaccine 38:8099–8106. https://doi.org/10.1016/j.vaccine.2020.11.010. (PMID: 10.1016/j.vaccine.2020.11.010)
de Sá Guimarães A, do Carmo FB, Pauletti RB, Seyffert N, Ribeiro D, Lage AP, Heinemann MB, Miyoshi A, Azevedo V, Guimarães Gouveia AM (2011) Caseous lymphadenitis: epidemiology, diagnosis, and control. IIOAB J 2:33–43.
Dorella FA, Pacheco LG, Seyffert N, Portela RW, Meyer R, Miyoshi A, Azevedo V (2009) Antigens of Corynebacterium pseudotuberculosis and prospects for vaccine development. Expert Rev Vaccines 8:205–213. https://doi.org/10.1586/14760584.8.2.205. (PMID: 10.1586/14760584.8.2.20519196200)
Dorella FA, Pacheco LGC, Oliveira SC, Miyoshi A, Azevedo V (2006) Corynebacterium pseudotuberculosis: microbiology, biochemical properties, pathogenesis and molecular studies of virulence. Vet Res 37:201–218. https://doi.org/10.1051/vetres:2005056. (PMID: 10.1051/vetres:200505616472520)
Dormitzer PR, Grandi G, Rappuoli R (2012) Structural vaccinology starts to deliver. Nat Publ Gr 10:807–813. https://doi.org/10.1038/nrmicro2893. (PMID: 10.1038/nrmicro2893)
Droppa-Almeida D, Vivas WLP, Silva KKO, Rezende AFS, Simionatto S, Meyer R, Lima-Verde IB, Delagostin O, Borsuk S, Padilha FF (2016) Recombinant CP40 from Corynebacterium pseudotuberculosis confers protection in mice after challenge with a virulent strain. Vaccine 34:1091–1096. https://doi.org/10.1016/j.vaccine.2015.12.064. (PMID: 10.1016/j.vaccine.2015.12.06426796140)
Kazi A, Chuah C, Majeed ABA, Leow CH, Lim BH, Leow CY (2018) Current progress of immunoinformatics approach harnessed for cellular- and antibody-dependent vaccine design. Pathog Glob Health 112:123–131. https://doi.org/10.1080/20477724.2018.1446773. (PMID: 10.1080/20477724.2018.1446773295282656056828)
Kim S, Oh DB, Kwon O, Kang HA (2010) Identification and functional characterization of the NanH extracellular sialidase from Corynebacterium diphtheriae. J Biochem 147:523–533. https://doi.org/10.1093/jb/mvp198. (PMID: 10.1093/jb/mvp19820007980)
Lata KS, Kumar S, Va V, Sharma P (2018) Exploring Leptospiral proteomes to identify potential candidates for vaccine design against Leptospirosis using an immunoinformatics approach. Sci Rep 8:1–15. https://doi.org/10.1038/s41598-018-25281-3.
Mandlik A, Swierczynski A, Das A, Ton-that H (2007) Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol 16:33–40. https://doi.org/10.1016/j.tim.2007.10.010.
Niebisch A, Kabus A, Schultz C, Weil B, Bott M (2006) Corynebacterial protein kinase G controls 2-oxoglutarate dehydrogenase activity via the phosphorylation status of the OdhI protein. J Biol Chem 281:12300–12307. https://doi.org/10.1074/jbc.M512515200. (PMID: 10.1074/jbc.M51251520016522631)
Oli AN, Obialor WO, Ifeanyichukwu MO, Odimegwu DC, Okoyeh JN, Emechebe GO, Adejumo SA, Ibeanu GC (2020) Immunoinformatics and vaccine development: an overview. ImmunoTargets Ther 9:13–30. (PMID: 10.2147/ITT.S241064)
Osman AY, Nordin ML, Kadir AA, Saharee AA (2018) The epidemiology and pathophysiology of caseous lymphadenitis: a review. J Vet Med Res 5:1129.
Piddington DL, Fang FC, Laessig T, Cooper M, Orme IM, Buchmeier NA, Cooper AM (2001) Cu, Zn superoxide dismutase of Mycobacterium tuberculosis contributes to survival in activated macrophages that are generating an oxidative burst. Infect Immun 69:4980–4987. https://doi.org/10.1128/IAI.69.8.4980. (PMID: 10.1128/IAI.69.8.49801144717698590)
Priyanka V, Chichili R, Kumar V, Sivaraman J (2013) Linkers in the structural biology of protein-protein interactions. Protein Sci 22:153–167. https://doi.org/10.1002/pro.2206.
Rezende AFS, Brum AA, Bezerra FSB, Braite DC, de Sá GL, Thurow HS, Seixas FK, Azevedo VAC, Portela RW, Borsuk S (2020) Assessment of the acid phosphatase CP01850 from Corynebacterium pseudotuberculosis in DNA and subunit vaccines formulations against caseous lymphadenitis. Brazilian J Vet Anim Sci 72:199–207.
Rost B (1999) Twilight zone of protein sequence alignments. Protein Eng 12:85–94. https://doi.org/10.1093/protein/12.2.85. (PMID: 10.1093/protein/12.2.8510195279)
Santana-Jorge KTO, Santos TM, Tartaglia NR, Aguiar Edgar L, Souza RFS, Mariutti RB, Eberle RJ, Arni RK, Portela RW, Meyer R, Azevedo V (2016) Putative virulence factors of Corynebacterium pseudotuberculosis FRC41: vaccine potential and protein expression. Microb Cell Fact 15:1–13. https://doi.org/10.1186/s12934-016-0479-6. (PMID: 10.1186/s12934-016-0479-6)
Seyffert N, Guimarães AS, Pacheco LGC, Portela RW, Bastos BL, Dorella FA, Heinemann MB, Lage AP, Gouveia AMG, Meyer R, Miyoshi A, Azevedo V (2010) High seroprevalence of caseous lymphadenitis in Brazilian goat herds revealed by Corynebacterium pseudotuberculosis secreted proteins-based ELISA. Res Vet Sci 88(50):55. https://doi.org/10.1016/j.rvsc.2009.07.002. (PMID: 10.1016/j.rvsc.2009.07.002)
Sheu SY, Tseng HJ, Huang SP, Chien CH (2002) Cloning, expression, and deletion analysis of large nanH of Clostridium perfringens ATCC 10543. Enzyme Microb Technol 31:794–803. https://doi.org/10.1016/S0141-0229(02)00177-1. (PMID: 10.1016/S0141-0229(02)00177-1)
Silva MTDO, Bezerra FSB, de Pinho RB, Begnini KR, Seixas FK, Collares T, Portela RD, Azevedo V, Dellagostin O, Borsuk S (2018) Association of Corynebacterium pseudotuberculosis recombinant proteins rCP09720 or rCP01850 with rPLD as immunogens in caseous lymphadenitis immunoprophylaxis. Vaccine 36:74–83. https://doi.org/10.1016/j.vaccine.2017.11.029. (PMID: 10.1016/j.vaccine.2017.11.02929174312)
Sonnhammer EL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Intell Syst Mol Biol 6:175–182.
Soria-Guerra RE, Nieto-Gomez R, Govea-Alonso DO, Rosales-Mendoza S (2014) An overview of bioinformatics tools for epitope prediction: implications on vaccine development. J Biomed Inform 53:405–414. https://doi.org/10.1016/j.jbi.2014.11.003. (PMID: 10.1016/j.jbi.2014.11.00325464113)
Trost E, Ott L, Schneider J, Schröder J, Jaenicke S, Goesmann A, Husemann P, Stoye J, Dorella FA, Rocha FS, de Castro Soares S, D’Afonseca V, Miyoshi A, Ruiz J, Silva A, Azevedo V, Burkovski A, Guiso N, Join-Lambert OF, Kayal S, Tauch A (2010) The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-regulatory networks contributing to virulence. BMC Genomics 11:728. https://doi.org/10.1186/1471-2164-11-728. (PMID: 10.1186/1471-2164-11-728211927863022926)
Validi M, Karkhah A, Prajapati VK, Nouri HR (2018) Immuno-informatics based approaches to design a novel multi epitope-based vaccine for immune response reinforcement against Leptospirosis. Mol Immunol 104:128–138. https://doi.org/10.1016/j.molimm.2018.11.005. (PMID: 10.1016/j.molimm.2018.11.00530448609)
Yang J, Zhang Y (2015) Protein structure and function prediction uI-TASSER. Curr Protoc Bioinformatics 52:1–15. https://doi.org/10.1002/0471250953.bi0508s52.
فهرسة مساهمة: Keywords: C. pseudotuberculosis; Chimera; Epitopes; Immunodominant; Immunoinformatics
المشرفين على المادة: 0 (Epitopes)
0 (Recombinant Fusion Proteins)
تواريخ الأحداث: Date Created: 20211008 Date Completed: 20211102 Latest Revision: 20211102
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC8497191
DOI: 10.1007/s00253-021-11619-x
PMID: 34622335
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-0614
DOI:10.1007/s00253-021-11619-x