دورية أكاديمية

Non-uniform excitation of the pectoralis major muscle during flat and inclined bench press exercises.

التفاصيل البيبلوغرافية
العنوان: Non-uniform excitation of the pectoralis major muscle during flat and inclined bench press exercises.
المؤلفون: Cabral HV; Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK., de Souza LML; Laboratório de Biomecânica, Programa de Engenharia Biomédica (COPPE), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil., de Oliveira LF; Laboratório de Biomecânica, Programa de Engenharia Biomédica (COPPE), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.; Laboratório de Biomecânica Muscular, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil., Vieira TM; Laboratorio di Ingegneria del Sistema Neuromuscolare (LISiN), Politecnico di Torino, Torino, Italy.; PolitoBIOMed Lab, Politecnico di Torino, Torino, Italy.
المصدر: Scandinavian journal of medicine & science in sports [Scand J Med Sci Sports] 2022 Feb; Vol. 32 (2), pp. 381-390. Date of Electronic Publication: 2021 Oct 23.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Munksgaard International Publishers Country of Publication: Denmark NLM ID: 9111504 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1600-0838 (Electronic) Linking ISSN: 09057188 NLM ISO Abbreviation: Scand J Med Sci Sports Subsets: MEDLINE
أسماء مطبوعة: Publication: Copenhagen : Munksgaard International Publishers
Original Publication: Copenhagen : Munksgaard, c1991-
مواضيع طبية MeSH: Pectoralis Muscles* , Resistance Training*, Electromyography ; Exercise ; Humans ; Muscle Strength ; Muscle, Skeletal ; Weight Lifting
مستخلص: Non-physiological sources may lead to equivocal interpretation on the degree of muscle excitation from electromyograms (EMGs) amplitude. This presumably explains the contradictory findings regarding the effect of the bench press inclination on the pectoralis major (PM) activation pattern. To contend with these issues, herein we used high-density surface EMG to investigate whether different PM regions are excited during the flat and 45° inclined bench press exercises. Single-differential EMGs were collected from 15 regions along the PM cranio-caudal axis, while 8 volunteers performed a set of the flat and 45° inclined bench press at 50% and 70% of 1 repetition maximum. The coefficient of variation, the range of motion, and the cycle duration were calculated from the barbell vertical position to assess the within-subject consistency across cycles. The number of channels detecting the largest EMGs amplitude (active channels), their interquartile range, and their barycentre coordinate were assessed to characterize the EMG amplitude distribution within PM. No significant differences in the range of motion (p > 0.11), cycle duration (p > 0.28), number of active channels (p > 0.05), and interquartile range of active channels (p > 0.39) were observed between the two bench press inclinations. Conversely, the barycentre shifted toward the PM clavicular region (p < 0.001) when the bench press changed from flat to 45°. Our results revealed that greatest EMG amplitudes were concentrated at the PM sternocostal and clavicular heads when exercising in the flat and 45° inclined bench press, respectively. Performing the bench press exercise, with different postures, seem to demand the excitation of different PM regions.
(© 2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.)
References: Akima H, Takahashi H, Kuno S-Y, Katsuta S. Coactivation pattern in human quadriceps during isokinetic knee-extension by muscle functional MRI. Eur J Appl Physiol. 2004;91(1):7-14.
Wakahara T, Fukutani A, Kawakami Y, Yanai T. Nonuniform muscle hypertrophy: its relation to muscle activation in training session. Med Sci Sports Exerc. 2013;45(11):2158-2165.
Miyamoto N, Wakahara T, Kawakami Y. Task-dependent inhomogeneous muscle activities within the bi-articular human rectus femoris muscle. PLoS One. 2012;7(3):e34269.
Gallina A, Merletti R, Gazzoni M. Uneven spatial distribution of surface EMG: what does it mean? Eur J Appl Physiol. 2013;113(4):887-894.
de Souza LM, da Fonseca DB, Cabral HD, de Oliveira LF, Vieira TM. Is myoelectric activity distributed equally within the rectus femoris muscle during loaded, squat exercises? J Electromyogr Kinesiol. 2017;33:10-19.
Zijdewind I, Kernell D, Kukulka CG. Spatial differences in fatigue-associated electromyographic behaviour of the human first dorsal interosseus muscle. J Physiol. 1995;483(2):499-509.
Holtermann A, Roeleveld K, Mork PJ, et al. Selective activation of neuromuscular compartments within the human trapezius muscle. J Electromyogr Kinesiol. 2009;19(5):896-902.
Staudenmann D, Kingma I, Daffertshofer A, Stegeman DF, van Dieën JH. Heterogeneity of muscle activation in relation to force direction: a multi-channel surface electromyography study on the triceps surae muscle. J Electromyogr Kinesiol. 2009;19(5):882-895.
Gazzoni M, Celadon N, Mastrapasqua D, Paleari M, Margaria V, Ariano P. Quantifying forearm muscle activity during wrist and finger movements by means of multi-channel electromyography. PLoS One. 2014;9(10):e109943.
Vieira TM, Botter A. The accurate assessment of muscle excitation requires the detection of multiple surface electromyograms. Exerc Sport Sci Rev. 2021;49(1):23-34.
Watanabe K, Kouzaki M, Moritani T. Task-dependent spatial distribution of neural activation pattern in human rectus femoris muscle. J Electromyogr Kinesiol. 2012;22(2):251-258.
Paton ME, Brown JM. An electromyographic analysis of functional differentiation in human pectoralis major muscle. J Electromyogr Kinesiol. 1994;4(3):161-169.
Stastny P, Gołaś A, Blazek D, et al. A systematic review of surface electromyography analyses of the bench press movement task. PLoS One. 2017;12(2):e0171632.
Trebs AA, Brandenburg JP, Pitney WA. An electromyography analysis of 3 muscles surrounding the shoulder joint during the performance of a chest press exercise at several angles. J Strength Cond Res. 2010;24(7):1925-1930.
Lauver JD, Cayot TE, Scheuermann BW. Influence of bench angle on upper extremity muscular activation during bench press exercise. European Journal of Sport Science. 2016;16(3):309-316.
Coratella G, Tornatore G, Longo S, Esposito F, Cè E. Specific prime movers’ excitation during free-weight bench press variations and chest press machine in competitive bodybuilders. Eur J Sport Sci. 2020;20(5):571-579.
Barnett C, Kippers V, Turner P. Effects of variations of the bench press exercise on the EMG activity of five shoulder muscles. J Strength Cond Res. 1995;9(4):222.
Saeterbakken AH, Mo D-A, Scott S, Andersen V. The effects of bench press variations in competitive athletes on muscle activity and performance. J Hum Kinet. 2017;57:61-71.
Vigotsky AD, Halperin I, Lehman GJ, Trajano GS, Vieira TM. Interpreting signal amplitudes in surface electromyography studies in sport and rehabilitation sciences. Front Physiol. 2018;8:985.
Mancebo FD, Cabral HV, de Souza LML, de Oliveira LF, Vieira TM. Innervation zone locations distribute medially within the pectoralis major muscle during bench press exercise. J Electromyogr Kinesiol. 2019;46:8-13.
Kraemer WJ, Ratamess NA. Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc. 2004;36(4):674-688.
Mookerjee S, Ratamess N. Comparison of strength differences and joint action durations between full and partial range-of-motion bench press exercise. J Strength Cond Res. 1999;13(1):76.
Lehman GJ. The influence of grip width and forearm pronation/supination on upper-body myoelectric activity during the flat bench press. J Strength Cond Res. 2005;19(3):587-591.
Garber CE, Blissmer B, Deschenes MR, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334-1359.
Rainoldi A, Melchiorri G, Caruso I. A method for positioning electrodes during surface EMG recordings in lower limb muscles. J Neurosci Methods. 2004;134(1):37-43.
Nishihara K, Kawai H, Chiba Y, Kanemura N, Gomi T. Investigation of innervation zone shift with continuous dynamic muscle contraction. Comput Math Methods Med. 2013;2013:174342.
Vieira TM, Merletti R, Mesin L. Automatic segmentation of surface EMG images: improving the estimation of neuromuscular activity. J Biomech. 2010;43(11):2149-2158.
Duffey MJ, Challis JH. Fatigue effects on bar kinematics during the bench press. J Strength Cond Res. 2007;21(2):556-560.
Gallina A, Vieira T. Territory and fiber orientation of vastus medialis motor units: a surface electromyography investigation. Muscle Nerve. 2015;52(6):1057-1065.
Lulic-Kuryllo T, Negro F, Jiang N, Dickerson CR. Standard bipolar surface EMG estimations mischaracterize pectoralis major activity in commonly performed tasks. J Electromyogr Kinesiol. 2021;56:102509.
Glass SC, Armstrong T. Electromyographical activity of the pectoralis muscle during incline and decline bench presses. J Strength Cond Res. 1997;11(3):163.
Merletti R, Farina D, Gazzoni M. The linear electrode array: a useful tool with many applications. J Electromyogr Kinesiol. 2003;13(1):37-47.
Martin S, MacIsaac D. Innervation zone shift with changes in joint angle in the brachial biceps. J Electromyogr Kinesiol. 2006;16(2):144-148.
Gabriel S, Lau RW, Gabriel C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol. 1996;41(11):2251-2269.
Vieira TM, Bisi MC, Stagni R, Botter A. Changes in tibialis anterior architecture affect the amplitude of surface electromyograms. Journal of NeuroEngineering and Rehabilitation. 2017;14(1):81.
Watanabe K, Kouzaki M, Moritani T. Regional neuromuscular regulation within human rectus femoris muscle during gait. J Biomech. 2014;47(14):3502-3508.
Fung L, Wong B, Ravichandiran K, Agur A, Rindlisbacher T, Elmaraghy A. Three-dimensional study of pectoralis major muscle and tendon architecture. Clin Anat. 2009;22(4):500-508.
Vieira TM, Loram ID, Muceli S, Merletti R, Farina D. Postural activation of the human medial gastrocnemius muscle: are the muscle units spatially localised? J Physiol. 2011;589(Pt 2):431-443.
Haładaj R, Wysiadecki G, Clarke E, Polguj M, Topol M. Anatomical variations of the pectoralis major muscle: notes on their impact on pectoral nerve innervation patterns and discussion on their clinical relevance. Biomed Res Int. 2019;2019:6212039.
Blazevich AJ, Gill ND, Bronks R, Newton RU. Training-specific muscle architecture adaptation after 5-wk training in athletes. Med Sci Sports Exerc. 2003;35(12):2013-2022.
معلومات مُعتمدة: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; Conselho Nacional de Desenvolvimento Científico e Tecnológico; Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro; Financiadora de Estudos e Projetos
فهرسة مساهمة: Keywords: bench press variations; dynamic contractions; electromyography; high-density surface electromyography; resistance training
تواريخ الأحداث: Date Created: 20211013 Date Completed: 20220114 Latest Revision: 20220114
رمز التحديث: 20221213
DOI: 10.1111/sms.14082
PMID: 34644424
قاعدة البيانات: MEDLINE
الوصف
تدمد:1600-0838
DOI:10.1111/sms.14082