دورية أكاديمية

Cdc42-Specific GTPase-Activating Protein Rga1 Squelches Crosstalk between the High-Osmolarity Glycerol (HOG) and Mating Pheromone Response MAPK Pathways.

التفاصيل البيبلوغرافية
العنوان: Cdc42-Specific GTPase-Activating Protein Rga1 Squelches Crosstalk between the High-Osmolarity Glycerol (HOG) and Mating Pheromone Response MAPK Pathways.
المؤلفون: Patterson JC; Department of Molecular and Cell Biology, Division of Biochemistry, Biophysics and Structural Biology, University of California, Berkeley, CA 94720, USA.; Yaffe Laboratory, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA., Goupil LS; Department of Molecular and Cell Biology, Division of Biochemistry, Biophysics and Structural Biology, University of California, Berkeley, CA 94720, USA.; Harney Science Center, Department of Biology, University of San Francisco, Rm. 258, San Francisco, CA 94117, USA., Thorner J; Department of Molecular and Cell Biology, Division of Biochemistry, Biophysics and Structural Biology, University of California, Berkeley, CA 94720, USA.
المصدر: Biomolecules [Biomolecules] 2021 Oct 17; Vol. 11 (10). Date of Electronic Publication: 2021 Oct 17.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: MDPI Country of Publication: Switzerland NLM ID: 101596414 Publication Model: Electronic Cited Medium: Internet ISSN: 2218-273X (Electronic) Linking ISSN: 2218273X NLM ISO Abbreviation: Biomolecules Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Basel, Switzerland : MDPI, 2011-
مواضيع طبية MeSH: CDC28 Protein Kinase, S cerevisiae/*genetics , GTPase-Activating Proteins/*genetics , Mitogen-Activated Protein Kinases/*genetics , Pheromones/*genetics , Saccharomyces cerevisiae Proteins/*genetics , cdc42 GTP-Binding Protein/*genetics, Catalytic Domain/genetics ; Gene Expression Regulation, Fungal/genetics ; Genes, Mating Type, Fungal/genetics ; Phosphoprotein Phosphatases/genetics ; Phosphorylation/genetics ; Saccharomyces cerevisiae/genetics ; Signal Transduction/genetics
مستخلص: Eukaryotes utilize distinct mitogen/messenger-activated protein kinase (MAPK) pathways to evoke appropriate responses when confronted with different stimuli. In yeast, hyperosmotic stress activates MAPK Hog1, whereas mating pheromones activate MAPK Fus3 (and MAPK Kss1). Because these pathways share several upstream components, including the small guanosine-5'-triphosphate phosphohydrolase (GTPase) cell-division-cycle-42 (Cdc42), mechanisms must exist to prevent inadvertent cross-pathway activation. Hog1 activity is required to prevent crosstalk to Fus3 and Kss1. To identify other factors required to maintain signaling fidelity during hypertonic stress, we devised an unbiased genetic selection for mutants unable to prevent such crosstalk even when active Hog1 is present. We repeatedly isolated truncated alleles of RGA1 , a Cdc42-specific GTPase-activating protein (GAP), each lacking its C-terminal catalytic domain, that permit activation of the mating MAPKs under hyperosmotic conditions despite Hog1 being present. We show that Rga1 down-regulates Cdc42 within the high-osmolarity glycerol (HOG) pathway, but not the mating pathway. Because induction of mating pathway output via crosstalk from the HOG pathway takes significantly longer than induction of HOG pathway output, our findings suggest that, under normal conditions, Rga1 contributes to signal insulation by limiting availability of the GTP-bound Cdc42 pool generated by hypertonic stress. Thus, Rga1 action contributes to squelching crosstalk by imposing a type of "kinetic proofreading". Although Rga1 is a Hog1 substrate in vitro, we eliminated the possibility that its direct Hog1-mediated phosphorylation is necessary for its function in vivo. Instead, we found first that, like its paralog Rga2, Rga1 is subject to inhibitory phosphorylation by the S. cerevisiae cyclin-dependent protein kinase 1 (Cdk1) ortholog Cdc28 and that hyperosmotic shock stimulates its dephosphorylation and thus Rga1 activation. Second, we found that Hog1 promotes Rga1 activation by blocking its Cdk1-mediated phosphorylation, thereby allowing its phosphoprotein phosphatase 2A (PP2A)-mediated dephosphorylation. These findings shed light on why Hog1 activity is required to prevent crosstalk from the HOG pathway to the mating pheromone response pathway.
References: Mol Gen Genet. 1984;197(2):345-6. (PMID: 6394957)
Cell Signal. 2006 Apr;18(4):531-40. (PMID: 15972258)
Microbiol Mol Biol Rev. 1999 Mar;63(1):54-105. (PMID: 10066831)
Protein Sci. 2013 Dec;22(12):1698-710. (PMID: 24115095)
Nat Cell Biol. 2012 Sep;14(9):966-76. (PMID: 22842922)
Mol Cell Biol. 2016 Jan 19;36(7):1109-23. (PMID: 26787842)
Cell. 2009 Mar 20;136(6):1085-97. (PMID: 19303851)
Cell Biochem Biophys. 2003;39(1):45-59. (PMID: 12835528)
Science. 2010 Jan 22;327(5964):425-31. (PMID: 20093466)
Proc Natl Acad Sci U S A. 2020 Apr 21;117(16):8924-8933. (PMID: 32265285)
Mol Biol Cell. 2009 Dec;20(24):5117-26. (PMID: 19846660)
Cell. 2015 Mar 12;160(6):1182-95. (PMID: 25768911)
Curr Biol. 2000 Jun 1;10(11):630-9. (PMID: 10837245)
EMBO Rep. 2021 Feb 3;22(2):e51121. (PMID: 33491328)
Genes Dev. 1998 Sep 15;12(18):2874-86. (PMID: 9744864)
J Mol Biol. 2006 Feb 10;356(1):142-54. (PMID: 16337230)
Mol Cell Biol. 1999 Oct;19(10):7123-37. (PMID: 10490648)
Sci Signal. 2010 Feb 16;3(109):ra12. (PMID: 20159853)
Yeast. 2005 Jun;22(8):653-7. (PMID: 16034826)
Science. 1994 Aug 5;265(5173):808-11. (PMID: 7914033)
Novartis Found Symp. 2005;269:47-54; discussion 54-8, 223-30. (PMID: 16355534)
Science. 2009 Sep 25;325(5948):1682-6. (PMID: 19779198)
Mol Biol Cell. 2020 Nov 1;31(23):2570-2582. (PMID: 32941095)
J Proteome Res. 2020 Aug 7;19(8):3405-3417. (PMID: 32597660)
Mol Biol Cell. 2020 Mar 15;31(6):491-510. (PMID: 31940256)
Genetics. 2012 Jan;190(1):23-49. (PMID: 22219507)
Biochim Biophys Acta. 2007 Aug;1773(8):1311-40. (PMID: 17604854)
Int J Mol Sci. 2019 Apr 05;20(7):. (PMID: 30959830)
Genes Dev. 1997 Nov 15;11(22):2972-82. (PMID: 9367980)
Mol Biol Cell. 2000 Nov;11(11):4033-49. (PMID: 11071925)
EMBO J. 2000 Sep 1;19(17):4623-31. (PMID: 10970855)
Biotechniques. 2000 Dec;29(6):1226-31. (PMID: 11126125)
Science. 1995 Jul 28;269(5223):554-8. (PMID: 7624781)
Annu Rev Cell Dev Biol. 2017 Oct 6;33:77-101. (PMID: 28783960)
Yeast. 2001 Jul;18(10):943-51. (PMID: 11447600)
Mol Biol Cell. 2011 Nov;22(22):4447-59. (PMID: 21965290)
EMBO J. 2006 Jun 7;25(11):2338-46. (PMID: 16688223)
Sci Signal. 2014 Feb 25;7(314):ra21. (PMID: 24570489)
Nat Methods. 2007 Jun;4(6):511-6. (PMID: 17486086)
Cell Rep. 2015 Feb 24;10(7):1202-14. (PMID: 25704821)
Mol Biol Cell. 2009 Aug;20(15):3572-82. (PMID: 19477922)
Mol Microbiol. 2013 Apr;88(1):5-19. (PMID: 23461595)
Sci Signal. 2015 Jan 13;8(359):ra5. (PMID: 25587192)
EMBO J. 2007 Aug 8;26(15):3521-33. (PMID: 17627274)
Genes Dev. 1997 Jul 1;11(13):1690-702. (PMID: 9224718)
Genes Dev. 2006 Mar 15;20(6):734-46. (PMID: 16543225)
Biochem J. 2010 Feb 24;426(3):243-53. (PMID: 20175747)
Mol Biol Cell. 2010 Oct 1;21(19):3475-86. (PMID: 20702584)
Cell Syst. 2018 Feb 28;6(2):192-205.e3. (PMID: 29361465)
Nat Biotechnol. 2008 Dec;26(12):1339-40. (PMID: 19060867)
Cell Commun Signal. 2019 Jun 17;17(1):66. (PMID: 31208443)
Mol Biol Cell. 2017 Mar 1;28(5):576-586. (PMID: 28077617)
Cell Cycle. 2020 Jul;19(14):1707-1715. (PMID: 32552303)
Curr Biol. 2007 Apr 17;17(8):659-67. (PMID: 17363249)
Nat Commun. 2015 Apr 21;6:6975. (PMID: 25898136)
Curr Genet. 2020 Oct;66(5):867-880. (PMID: 32564133)
J Cell Sci. 2001 Nov;114(Pt 22):3967-78. (PMID: 11739629)
Mol Cell Proteomics. 2008 Jul;7(7):1389-96. (PMID: 18407956)
Genes Dev. 1995 Dec 1;9(23):2949-63. (PMID: 7498791)
Nature. 1998 Jan 8;391(6663):191-5. (PMID: 9428767)
Science. 2010 May 21;328(5981):1043-6. (PMID: 20489023)
Nat Cell Biol. 2004 Oct;6(10):997-1002. (PMID: 15448699)
Eukaryot Cell. 2002 Dec;1(6):884-94. (PMID: 12477789)
PLoS One. 2019 Jan 25;14(1):e0211380. (PMID: 30682143)
EMBO J. 2006 Jul 12;25(13):3033-44. (PMID: 16778768)
Biochem Soc Trans. 2006 Nov;34(Pt 5):837-41. (PMID: 17052210)
Science. 1997 Jun 13;276(5319):1702-5. (PMID: 9180081)
Proc Natl Acad Sci U S A. 1978 Oct;75(10):4962-6. (PMID: 368805)
J Biol Chem. 2008 Dec 5;283(49):33798-802. (PMID: 18854322)
Am J Physiol Heart Circ Physiol. 2003 Jul;285(1):H97-103. (PMID: 12649078)
Microb Cell. 2020 May 19;7(7):175-189. (PMID: 32656257)
PLoS Genet. 2012 Jan;8(1):e1002437. (PMID: 22242015)
Proc Natl Acad Sci U S A. 1974 Oct;71(10):4135-9. (PMID: 4530290)
Mol Cell Biol. 2006 Apr;26(7):2648-60. (PMID: 16537909)
Eukaryot Cell. 2009 Apr;8(4):606-16. (PMID: 19218425)
J Biol Chem. 2016 Apr 8;291(15):7788-95. (PMID: 26907689)
Genetics. 2012 Oct;192(2):289-318. (PMID: 23028184)
Curr Genet. 2015 Aug;61(3):373-82. (PMID: 25663258)
Nat Methods. 2013 Jul;10(7):676-82. (PMID: 23749301)
Front Physiol. 2012 Dec 21;3:475. (PMID: 23267331)
Genetics. 1998 Apr;148(4):1551-7. (PMID: 9560374)
J Cell Sci. 2019 May 31;132(11):. (PMID: 31152053)
Mol Biol Cell. 2004 Feb;15(2):532-42. (PMID: 14595107)
Nat Commun. 2017 Jul 4;8(1):56. (PMID: 28676626)
Elife. 2015 Aug 14;4:. (PMID: 26274562)
Science. 2011 May 6;332(6030):732-5. (PMID: 21551064)
Mol Cell. 2004 Jun 18;14(6):825-32. (PMID: 15200959)
Mol Cell Biol. 2006 Feb;26(3):912-28. (PMID: 16428446)
Mol Syst Biol. 2008;4:161. (PMID: 18277378)
Science. 1999 Aug 6;285(5429):901-6. (PMID: 10436161)
Trends Microbiol. 2011 Aug;19(8):400-10. (PMID: 21640592)
Eukaryot Cell. 2006 Aug;5(8):1215-28. (PMID: 16896207)
Sci Signal. 2010 Oct 19;3(144):ra75. (PMID: 20959523)
Arch Toxicol. 2015 Jun;89(6):867-82. (PMID: 25690731)
Eukaryot Cell. 2002 Jun;1(3):469-80. (PMID: 12455995)
Oncogene. 2007 May 14;26(22):3100-12. (PMID: 17496909)
Science. 1998 Nov 20;282(5393):1511-6. (PMID: 9822386)
Mol Cell Biol. 2012 Nov;32(22):4705-17. (PMID: 22988299)
Mol Biol Cell. 2007 Dec;18(12):4945-56. (PMID: 17914055)
Genetics. 1989 May;122(1):19-27. (PMID: 2659436)
Yeast. 1998 Jan 30;14(2):115-32. (PMID: 9483801)
EMBO J. 2007 Oct 31;26(21):4487-500. (PMID: 17853895)
Phys Biol. 2009 Aug 06;6(3):036019. (PMID: 19657148)
Methods Enzymol. 2000;326:107-19. (PMID: 11036637)
Mol Cell Biol. 1998 Jul;18(7):3681-91. (PMID: 9632750)
Genetics. 1997 Feb;145(2):227-41. (PMID: 9071579)
Curr Opin Microbiol. 2010 Dec;13(6):677-83. (PMID: 20880736)
Mol Cell. 2010 Oct 8;40(1):87-98. (PMID: 20932477)
Fungal Genet Biol. 2020 Nov;144:103469. (PMID: 32950720)
Genes Dev. 1997 Nov 15;11(22):2958-71. (PMID: 9367979)
Sci Signal. 2014 Sep 16;7(343):re7. (PMID: 25227612)
Mol Cell Biol. 2002 May;22(9):2939-51. (PMID: 11940652)
Genetics. 2004 Oct;168(2):733-46. (PMID: 15514049)
Cell. 2006 Sep 22;126(6):1079-93. (PMID: 16990133)
EMBO J. 2020 Mar 2;39(5):e103444. (PMID: 32011004)
J Cell Biol. 2016 Jan 4;212(1):51-61. (PMID: 26728856)
Cell. 1988 Oct 21;55(2):221-34. (PMID: 2844413)
Genome Biol. 2006;7(10):R100. (PMID: 17076895)
J Cell Biol. 2007 Dec 31;179(7):1375-84. (PMID: 18166650)
Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12212-7. (PMID: 18719124)
معلومات مُعتمدة: GM07232 United States GM NIGMS NIH HHS; R01 GM101314 United States GM NIGMS NIH HHS; R01 GM021841 United States GM NIGMS NIH HHS; GM21841 United States GM NIGMS NIH HHS
فهرسة مساهمة: Keywords: cell regulation; protein phosphorylation; reporters; signal insulation; single-cell analysis; transcriptional
المشرفين على المادة: 0 (GTPase-Activating Proteins)
0 (Pheromones)
0 (Rga1 protein, S cerevisiae)
0 (Saccharomyces cerevisiae Proteins)
EC 2.7.11.22 (CDC28 Protein Kinase, S cerevisiae)
EC 2.7.11.24 (FUS3 protein, S cerevisiae)
EC 2.7.11.24 (HOG1 protein, S cerevisiae)
EC 2.7.11.24 (KSS1 protein, S cerevisiae)
EC 2.7.11.24 (Mitogen-Activated Protein Kinases)
EC 3.1.3.16 (Phosphoprotein Phosphatases)
EC 3.6.5.2 (cdc42 GTP-Binding Protein)
تواريخ الأحداث: Date Created: 20211023 Date Completed: 20220119 Latest Revision: 20220119
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC8533825
DOI: 10.3390/biom11101530
PMID: 34680163
قاعدة البيانات: MEDLINE
الوصف
تدمد:2218-273X
DOI:10.3390/biom11101530