دورية أكاديمية

Functional single-cell genomics of human cytomegalovirus infection.

التفاصيل البيبلوغرافية
العنوان: Functional single-cell genomics of human cytomegalovirus infection.
المؤلفون: Hein MY; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA. marco.hein@czbiohub.org.; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA. marco.hein@czbiohub.org.; Chan Zuckerberg Biohub, San Francisco, CA, USA. marco.hein@czbiohub.org., Weissman JS; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA. weissman@wi.mit.edu.; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA. weissman@wi.mit.edu.; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA. weissman@wi.mit.edu.
المصدر: Nature biotechnology [Nat Biotechnol] 2022 Mar; Vol. 40 (3), pp. 391-401. Date of Electronic Publication: 2021 Oct 25.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature America Publishing Country of Publication: United States NLM ID: 9604648 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1546-1696 (Electronic) Linking ISSN: 10870156 NLM ISO Abbreviation: Nat Biotechnol Subsets: MEDLINE
أسماء مطبوعة: Publication: New York Ny : Nature America Publishing
Original Publication: New York, NY : Nature Pub. Co., [1996-
مواضيع طبية MeSH: Cytomegalovirus Infections*/genetics , Genomics*, Clustered Regularly Interspaced Short Palindromic Repeats/genetics ; Fibroblasts ; Host-Pathogen Interactions/genetics ; Humans
مستخلص: Understanding how viral and host factors interact and how perturbations impact infection is the basis for designing antiviral interventions. Here we define the functional contribution of each viral and host factor involved in human cytomegalovirus infection in primary human fibroblasts through pooled CRISPR interference and nuclease screening. To determine how genetic perturbation of critical host and viral factors alters the timing, course and progression of infection, we applied Perturb-seq to record the transcriptomes of tens of thousands of CRISPR-modified single cells and found that, normally, most cells follow a stereotypical transcriptional trajectory. Perturbing critical host factors does not change the stereotypical transcriptional trajectory per se but can stall, delay or accelerate progression along the trajectory, allowing one to pinpoint the stage of infection at which host factors act. Conversely, perturbation of viral factors can create distinct, abortive trajectories. Our results reveal the roles of host and viral factors and provide a roadmap for the dissection of host-pathogen interactions.
(© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.)
التعليقات: Comment in: Nat Microbiol. 2021 Dec;6(12):1477-1478. (PMID: 34697463)
References: Mocarski Jr., E. S., Schenk, T., Griffiths, P. D. & Pass, R. F. Cytomegaloviruses. in Fields Virology 1960–2014 (Lippincott Williams & Wilkins, 2013).
Gatherer, D. et al. High-resolution human cytomegalovirus transcriptome. Proc. Natl Acad. Sci. USA 108, 19755–19760 (2011). (PMID: 22109557324180610.1073/pnas.1115861108)
Marcinowski, L. et al. Real-time transcriptional profiling of cellular and viral gene expression during lytic cytomegalovirus infection. PLoS Pathog. 8, e1002908 (2012). (PMID: 22969428343524010.1371/journal.ppat.1002908)
Stern-Ginossar, N. et al. Decoding human cytomegalovirus. Science 338, 1088–1093 (2012). (PMID: 2318085910.1126/science.1227919)
Weekes, M. P. et al. Quantitative temporal viromics: an approach to investigate host-pathogen interaction. Cell 157, 1460–1472 (2014). (PMID: 24906157404846310.1016/j.cell.2014.04.028)
Tirosh, O. et al. The transcription and translation landscapes during human cytomegalovirus infection reveal novel host-pathogen interactions. PLoS Pathog. 11, e1005288 (2015). (PMID: 26599541465805610.1371/journal.ppat.1005288)
Jean Beltran, P. M., Mathias, R. A. & Cristea, I. M. A portrait of the human organelle proteome in space and time during cytomegalovirus infection. Cell Syst. 3, 361–373 (2016). (PMID: 27641956508315810.1016/j.cels.2016.08.012)
Sinzger, C. et al. Fibroblasts, epithelial cells, endothelial cells and smooth muscle cells are major targets of human cytomegalovirus infection in lung and gastrointestinal tissues. J. Gen. Virol. 76, 741–750 (1995). (PMID: 904931910.1099/0022-1317-76-4-741)
Yu, D., Silva, M. C. & Shenk, T. Functional map of human cytomegalovirus AD169 defined by global mutational analysis. Proc. Natl Acad. Sci. USA 100, 12396–12401 (2003). (PMID: 1451985621876910.1073/pnas.1635160100)
Dunn, W. et al. Functional profiling of a human cytomegalovirus genome. Proc. Natl Acad. Sci. USA 100, 14223–14228 (2003). (PMID: 1462398128357310.1073/pnas.2334032100)
Puschnik, A. S., Majzoub, K., Ooi, Y. S. & Carette, J. E. A CRISPR toolbox to study virus-host interactions. Nat. Rev. Microbiol. 15, 351–364 (2017). (PMID: 28420884580079210.1038/nrmicro.2017.29)
Russell, A. B., Trapnell, C. & Bloom, J. D. Extreme heterogeneity of influenza virus infection in single cells. eLife 7, e32303 (2018).
Erhard, F. et al. scSLAM-seq reveals core features of transcription dynamics in single cells. Nature 571, 419–423 (2019). (PMID: 3129254510.1038/s41586-019-1369-y)
van Diemen, F. R. et al. CRISPR/Cas9-mediated genome editing of herpesviruses limits productive and latent infections. PLoS Pathog. 12, e1005701 (2016). (PMID: 27362483492887210.1371/journal.ppat.1005701)
Van Damme, E. & Van Loock, M. Functional annotation of human cytomegalovirus gene products: an update. Front. Microbiol. 5, 218 (2014). (PMID: 249045344032930)
McCormick, A. L., Skaletskaya, A., Barry, P. A., Mocarski, E. S. & Goldmacher, V. S. Differential function and expression of the viral inhibitor of caspase 8-induced apoptosis (vICA) and the viral mitochondria-localized inhibitor of apoptosis (vMIA) cell death suppressors conserved in primate and rodent cytomegaloviruses. Virology 316, 221–233 (2003). (PMID: 1464460510.1016/j.virol.2003.07.003)
Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014). (PMID: 25307932425385910.1016/j.cell.2014.09.029)
Horlbeck, M. A. et al. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. eLife 5, e19760 (2016). (PMID: 27661255509485510.7554/eLife.19760)
Compton, T., Nowlin, D. M. & Cooper, N. R. Initiation of human cytomegalovirus infection requires initial interaction with cell surface heparan sulfate. Virology 193, 834–841 (1993). (PMID: 838475710.1006/viro.1993.1192)
Hetzenecker, S., Helenius, A. & Krzyzaniak, M. A. HCMV induces macropinocytosis for host cell entry in fibroblasts. Traffic 17, 351–368 (2016). (PMID: 2665038510.1111/tra.12355)
Pusapati, G. V., Luchetti, G. & Pfeffer, S. R. Ric1-Rgp1 complex is a guanine nucleotide exchange factor for the late Golgi Rab6A GTPase and an effector of the medial Golgi Rab33B GTPase. J. Biol. Chem. 287, 42129–42137 (2012). (PMID: 23091056351675810.1074/jbc.M112.414565)
Smith, R. D. et al. The COG complex, Rab6 and COPI define a novel Golgi retrograde trafficking pathway that is exploited by SubAB toxin. Traffic 10, 1502–1517 (2009). (PMID: 19678899275683010.1111/j.1600-0854.2009.00965.x)
Liu, S., Dominska-Ngowe, M. & Dykxhoorn, D. M. Target silencing of components of the conserved oligomeric Golgi complex impairs HIV-1 replication. Virus Res. 192, 92–102 (2014). (PMID: 25179963444710110.1016/j.virusres.2014.08.015)
Bassik, M. C. et al. A systematic mammalian genetic interaction map reveals pathways underlying ricin susceptibility. Cell 152, 909–922 (2013). (PMID: 23394947365261310.1016/j.cell.2013.01.030)
Selyunin, A. S., Iles, L. R., Bartholomeusz, G. & Mukhopadhyay, S. Genome-wide siRNA screen identifies UNC50 as a regulator of Shiga toxin 2 trafficking. J. Cell Biol. 216, 3249–3262 (2017). (PMID: 28883040562654910.1083/jcb.201704015)
Starling, G. P. et al. Folliculin directs the formation of a Rab34-RILP complex to control the nutrient-dependent dynamic distribution of lysosomes. EMBO Rep. 17, 823–841 (2016). (PMID: 27113757489381810.15252/embr.201541382)
Filipek, P. A. et al. LAMTOR/Ragulator is a negative regulator of Arl8b- and BORC-dependent late endosomal positioning. J. Cell Biol. 216, 4199–4215 (2017). (PMID: 28993467571627610.1083/jcb.201703061)
Pu, J., Keren-Kaplan, T. & Bonifacino, J. S. A Ragulator-BORC interaction controls lysosome positioning in response to amino acid availability. J. Cell Biol. 216, 4183–4197 (2017). (PMID: 28993468571627710.1083/jcb.201703094)
Becker, T., Le-Trilling, V. T. K. & Trilling, M. Cellular cullin RING ubiquitin ligases: druggable host dependency factors of cytomegaloviruses. Int. J. Mol. Sci. 20, 163 (2019). (PMID: 10.3390/ijms20071636)
Le-Trilling, V. T. K. et al. Broad and potent antiviral activity of the NAE inhibitor MLN4924. Sci. Rep. 6, 19977 (2016). (PMID: 26829401473429310.1038/srep19977)
Ott, M., Marques, D., Funk, C. & Bailer, S. M. Asna1/TRC40 that mediates membrane insertion of tail-anchored proteins is required for efficient release of herpes simplex virus 1 virions. Virol. J. 13, 175 (2016). (PMID: 27765046507231810.1186/s12985-016-0638-8)
Nishitsuji, H., Ujino, S., Harada, K. & Shimotohno, K. TIP60 complex inhibits hepatitis B virus transcription. J. Virol. 92, e01788-17 (2018). (PMID: 29321313582736810.1128/JVI.01788-17)
Kamine, J., Elangovan, B., Subramanian, T., Coleman, D. & Chinnadurai, G. Identification of a cellular protein that specifically interacts with the essential cysteine region of the HIV-1 Tat transactivator. Virology 216, 357–366 (1996). (PMID: 860726510.1006/viro.1996.0071)
Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882 (2016). (PMID: 27984733531557110.1016/j.cell.2016.11.048)
Cohen, Y. et al. The yeast p5 type ATPase, spf1, regulates manganese transport into the endoplasmic reticulum. PLoS ONE 8, e85519 (2013). (PMID: 24392018387738010.1371/journal.pone.0085519)
Wu, K., Oberstein, A., Wang, W. & Shenk, T. Role of PDGF receptor-α during human cytomegalovirus entry into fibroblasts. Proc. Natl Acad. Sci. USA 115, E9889–E9898 (2018). (PMID: 30275317619649210.1073/pnas.1806305115)
Soroceanu, L., Akhavan, A. & Cobbs, C. S. Platelet-derived growth factor-α receptor activation is required for human cytomegalovirus infection. Nature 455, 391–395 (2008). (PMID: 1870188910.1038/nature07209)
Kabanova, A. et al. Platelet-derived growth factor-α receptor is the cellular receptor for human cytomegalovirus gHgLgO trimer. Nat. Microbiol. 1, 16082 (2016). (PMID: 27573107491864010.1038/nmicrobiol.2016.82)
Martinez-Martin, N. et al. An unbiased screen for human cytomegalovirus identifies neuropilin-2 as a central viral receptor. Cell 174, 1158–1171 (2018). (PMID: 3005711010.1016/j.cell.2018.06.028)
Tzelepis, K. et al. A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in acute myeloid leukemia. Cell Rep. 17, 1193–1205 (2016). (PMID: 27760321508140510.1016/j.celrep.2016.09.079)
Morgens, D. W., Deans, R. M., Li, A. & Bassik, M. C. Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes. Nat. Biotechnol. 34, 634–636 (2016). (PMID: 27159373490091110.1038/nbt.3567)
Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14, 297–301 (2017). (PMID: 28099430533479110.1038/nmeth.4177)
Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866 (2016). (PMID: 27984732518111510.1016/j.cell.2016.11.038)
Jaitin, D. A. et al. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-seq. Cell 167, 1883–1896 (2016). (PMID: 2798473410.1016/j.cell.2016.11.039)
Zanini, F., Pu, S.-Y., Bekerman, E., Einav, S. & Quake, S. R. Single-cell transcriptional dynamics of flavivirus infection. eLife 7, e32942 (2018). (PMID: 29451494582627210.7554/eLife.32942)
Drayman, N., Patel, P., Vistain, L. & Tay, S. HSV-1 single-cell analysis reveals the activation of anti-viral and developmental programs in distinct sub-populations. eLife 8, e46339 (2019).
Wyler, E. et al. Single-cell RNA-sequencing of herpes simplex virus 1-infected cells connects NRF2 activation to an antiviral program. Nat. Commun. 10, 4878 (2019). (PMID: 31653857681475610.1038/s41467-019-12894-z)
Kotliar, D. et al. Single-cell profiling of Ebola virus disease in vivo reveals viral and host dynamics. Cell 183, 1383–1401 (2020). (PMID: 33159858770710710.1016/j.cell.2020.10.002)
An, P. et al. Single cell transcriptomics reveals a heterogeneous cellular response to BKV infection. J. Virol. 95, e02237 (2020).
Bogdanow, B. et al. Human cytomegalovirus tegument protein pp150 acts as a cyclin A2-CDK-dependent sensor of the host cell cycle and differentiation state. Proc. Natl Acad. Sci. USA 110, 17510–17515 (2013). (PMID: 24101496380864910.1073/pnas.1312235110)
Spear, G. T. et al. Host cell-derived complement control proteins CD55 and CD59 are incorporated into the virions of two unrelated enveloped viruses. Human T cell leukemia/lymphoma virus type I (HTLV-I) and human cytomegalovirus (HCMV). J. Immunol. 155, 4376–4381 (1995). (PMID: 759459710.4049/jimmunol.155.9.4376)
Isomura, H. & Stinski, M. F. Coordination of late gene transcription of human cytomegalovirus with viral DNA synthesis: recombinant viruses as potential therapeutic vaccine candidates. Expert Opin. Ther. Targets 17, 157–166 (2013). (PMID: 2323144910.1517/14728222.2013.740460)
Zhang, L., Yu, J. & Liu, Z. MicroRNAs expressed by human cytomegalovirus. Virol. J. 17, 34 (2020). (PMID: 32164742706921310.1186/s12985-020-1296-4)
Winkler, M., Rice, S. A. & Stamminger, T. UL69 of human cytomegalovirus, an open reading frame with homology to ICP27 of herpes simplex virus, encodes a transactivator of gene expression. J. Virol. 68, 3943–3954 (1994). (PMID: 818953023690010.1128/jvi.68.6.3943-3954.1994)
Lischka, P., Toth, Z., Thomas, M., Mueller, R. & Stamminger, T. The UL69 transactivator protein of human cytomegalovirus interacts with DEXD/H-Box RNA helicase UAP56 to promote cytoplasmic accumulation of unspliced RNA. Mol. Cell. Biol. 26, 1631–1643 (2006). (PMID: 16478985143026510.1128/MCB.26.5.1631-1643.2006)
Schommartz, T., Tang, J., Brost, R. & Brune, W. Differential requirement of human cytomegalovirus UL112–113 protein isoforms for viral replication. J. Virol. 91, e00254-17 (2017). (PMID: 28637762555316810.1128/JVI.00254-17)
Müller-Kuller, U. et al. A minimal ubiquitous chromatin opening element (UCOE) effectively prevents silencing of juxtaposed heterologous promoters by epigenetic remodeling in multipotent and pluripotent stem cells. Nucleic Acids Res. 43, 1577–1592 (2015). (PMID: 25605798433038110.1093/nar/gkv019)
Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014). (PMID: 25476604429082410.1186/s13059-014-0554-4)
Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR–Cas9. Nat. Biotechnol. 34, 184–191 (2016). (PMID: 26780180474412510.1038/nbt.3437)
Borst, E. M., Hahn, G., Koszinowski, U. H. & Messerle, M. Cloning of the human cytomegalovirus (HCMV) genome as an infectious bacterial artificial chromosome in Escherichia coli: a new approach for construction of HCMV mutants. J. Virol. 73, 8320–8329 (1999). (PMID: 1048258211284910.1128/JVI.73.10.8320-8329.1999)
Adamson, B., Norman, T. M., Jost, M. & Weissman, J. S. Approaches to maximize sgRNA-barcode coupling in Perturb-seq screens. Preprint at bioRxiv https://doi.org/10.1101/298349 (2018).
Dunn, J. G. & Weissman, J. S. Plastid: nucleotide-resolution analysis of next-generation sequencing and genomics data. BMC Genomics 17, 958 (2016). (PMID: 27875984512055710.1186/s12864-016-3278-x)
Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. https://doi.org/10.1038/nbt.4314 (2018).
Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019). (PMID: 30914743643575610.1038/s41598-019-41695-z)
Ding, J., Shah, S. & Condon, A. densityCut: an efficient and versatile topological approach for automatic clustering of biological data. Bioinformatics 32, 2567–2576 (2016). (PMID: 27153661501390210.1093/bioinformatics/btw227)
Heer, J., Kong, N. & Agrawala, M. Sizing the horizon: the effects of chart size and layering on the graphical perception of time series visualizations. in Proc. 27th Int. Conf. Human Factors in Computing Systems (ACM Press, 2009).
Murphy, E., Rigoutsos, I., Shibuya, T. & Shenk, T. E. Reevaluation of human cytomegalovirus coding potential. Proc. Natl Acad. Sci. USA 100, 13585–13590 (2003). (PMID: 1459319926385710.1073/pnas.1735466100)
تواريخ الأحداث: Date Created: 20211026 Date Completed: 20220421 Latest Revision: 20230208
رمز التحديث: 20231215
DOI: 10.1038/s41587-021-01059-3
PMID: 34697476
قاعدة البيانات: MEDLINE
الوصف
تدمد:1546-1696
DOI:10.1038/s41587-021-01059-3