دورية أكاديمية

LASSBio-596: a New Pre-clinical Candidate for Rheumatoid Arthritis?

التفاصيل البيبلوغرافية
العنوان: LASSBio-596: a New Pre-clinical Candidate for Rheumatoid Arthritis?
المؤلفون: Viana MDM; Pharmacology and Immunity Laboratory, Institute of Biological and Health Sciences, Federal University of Alagoas, Av. Lourival Melo Mota, SN, Tabuleiro do Martins, Maceio, AL, 57072-900, Brazil. suzana.magna@gmail.com., de Lima AA; Gonçalo Moniz Institute (Fiocruz, BA), BA, 40296-710, Salvador, Brazil., da Silva Neto GJ; Laboratory of Catalysis and Chemical Reactivity, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio, AL, 57072-900, Brazil., da Silva SMA; Pharmacology and Immunity Laboratory, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, AL, 57072-900, Brazil., Leite AB; Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, AL, 57072-900, Brazil., Dos Santos EC; Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Federal University of Alagoas, AL, 57072-900, Maceio, Brazil., Bassi ÊJ; Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Federal University of Alagoas, AL, 57072-900, Maceio, Brazil., Campesatto EA; Pharmacology and Immunity Laboratory, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, AL, 57072-900, Brazil., de Queiroz AC; Microbiology, Immunology and Parasitology Laboratory, Medical and Nursing Sciences Complex, Federal University of Alagoas - Campus Arapiraca, Av. Manoel Severino Barbosa - Bom Sucesso, Arapiraca, AL, 57309-005, Brazil., Barreiro EJ; Laboratory for Evaluation and Synthesis of Bioactive Substances, LASSBio®, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, PO Box 68024, Rio de Janeiro, RJ, 21944-910, Brazil., Lima LM; Laboratory for Evaluation and Synthesis of Bioactive Substances, LASSBio®, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, PO Box 68024, Rio de Janeiro, RJ, 21944-910, Brazil., Alexandre-Moreira MS; Pharmacology and Immunity Laboratory, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, AL, 57072-900, Brazil.
المصدر: Inflammation [Inflammation] 2022 Apr; Vol. 45 (2), pp. 528-543. Date of Electronic Publication: 2021 Oct 25.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic/Plenum Publishers Country of Publication: United States NLM ID: 7600105 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-2576 (Electronic) Linking ISSN: 03603997 NLM ISO Abbreviation: Inflammation Subsets: MEDLINE
أسماء مطبوعة: Publication: 1999- : New York, NY : Kluwer Academic/Plenum Publishers
Original Publication: New York, Plenum Press.
مواضيع طبية MeSH: Analgesics*/pharmacology , Arthritis, Rheumatoid*/chemically induced , Arthritis, Rheumatoid*/drug therapy, Anti-Inflammatory Agents/pharmacology ; Anti-Inflammatory Agents/therapeutic use ; Edema/drug therapy ; Humans ; Pain/chemically induced ; Pain/drug therapy ; Phthalic Acids ; Plant Extracts/pharmacology ; Sulfonamides
مستخلص: Pain and inflammatory disorders are significant health problems because of prevalence and associated disabilities. In this context, LASSBio-596 is a hybrid compound able to modulate TNF-α and phosphodiesterases 4 and 5, exhibiting an anti-inflammatory effect in the pulmonary inflammatory model. Aiming at a better description of the activities of LASSBio-596, we initially conducted nociception tests (acetic acid-induced abdominal writhing, glutamate, and formalin-induced nociception and hot plate test) and later inflammatory tests (acute, peritonitis; and chronic, arthritis) that directed us to this last one. In the abdominal writhing test, there was a dose-dependent inhibition, whose response occurred at the maximum dose (50 mg/kg, p.o.), used in the subsequent tests. LASSBio-596 also inhibited nociception induced by chemical (glutamate by 31.9%; and formalin, in both phases, 1st phase: 25.7%; 2nd phase: 23.9%) and thermal agents (hotplate, by increased latency for pain at two different times). These effects were independent of the motor function, legitimated in rotarod. As there was a response in the inflammatory component of nociception, we performed the peritonitis test, in which migration was inhibited by LASSBio-596 by 39.9%. As the inflammatory process is present in autoimmune diseases, we also performed the arthritis test. LASSBio-596 reduced paw edema from the 15th day to the 21st day of treatment (no liver changes and with fewer paw injuries). In addition, LASSBio-596 decreased serum levels of TNF-α by 67.1%. These data demonstrated the antinociceptive effect of LASSBio-596 and reinforces its anti-inflammatory property (i.e., RA), amplifying the therapeutic potential of this molecule.
(© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Mota, Paulo Henrique, Thais dos Santos, Alves de Lima, Flavia Rupolo Berach, and Ana Carolina Basso. Schmitt. 2020. Impacto da dor musculoesquelética na incapacidade funcional. Fisioterapia e Pesquisa 27: 85–92. https://doi.org/10.1590/1809-2950/19006327012020 . (PMID: 10.1590/1809-2950/19006327012020)
Raja, Srinivasa N., Daniel B. Carr, Milton Cohen, Nanna B. Finnerup, Herta Flor, Stephen Gibson, Francis J. Keefe, et al. 2020. The revised International Association for the Study of Pain definition of pain: Concepts, challenges, and compromises. Pain 161: 1976–1982. https://doi.org/10.1097/j.pain.0000000000001939 . (PMID: 10.1097/j.pain.0000000000001939326943877680716)
Woodell-May, Jennifer E., and Sven D. Sommerfeld. 2020. Role of inflammation and the immune system in the progression of osteoarthritis. Journal of Orthopaedic Research 38: 253–257. https://doi.org/10.1002/jor.24457 . (PMID: 10.1002/jor.2445731469192)
Smolen, Josef S., Daniel Aletaha, Anne Barton, Gerd R. Burmester, Paul Emery, Gary S. Firestein, Arthur Kavanaugh, et al. 2018. Rheumatoid arthritis. Nature Reviews Disease Primers 4: 18001. https://doi.org/10.1038/nrdp.2018.1 . (PMID: 10.1038/nrdp.2018.129417936)
Bjarnason, Ingvar, Carmelo Scarpignato, Erik Holmgren, Michael Olszewski, Kim D. Rainsford, and Angel Lanas. 2018. Mechanisms of damage to the gastrointestinal tract from nonsteroidal anti-inflammatory drugs. Gastroenterology 154: 500–514. https://doi.org/10.1053/j.gastro.2017.10.049 . (PMID: 10.1053/j.gastro.2017.10.049)
Ripa, Lena, Karl Edman, Matthew Dearman, Goran Edenro, Ramon Hendrickx, Victoria Ullah, Hui Fang Chang, et al. 2018. Discovery of a novel oral glucocorticoid receptor modulator (AZD9567) with improved side effect profile. Journal of Medicinal Chemistry 61: 1785–1799. https://doi.org/10.1021/acs.jmedchem.7b01690 . (PMID: 10.1021/acs.jmedchem.7b0169029424542)
Deguine, Jacques. 2018. New flavors in immunomodulation. Cell 173: 1553–1555. https://doi.org/10.1016/j.cell.2018.05.049 . (PMID: 10.1016/j.cell.2018.05.04929906438)
Zimmermann Franco, and Danielle Cristina. 2017. Investigação dos potenciais anti-inflamatório e antitumoral de análogos do resveratrol. Universidade Federal de Juiz de Fora.
Guantai, Eric, and Kelly Chibale. 2011. How can natural products serve as a viable source of lead compounds for the development of new/novel anti-malarials? Malaria Journal 10: S2. https://doi.org/10.1186/1475-2875-10-S1-S2 . (PMID: 10.1186/1475-2875-10-S1-S2214110133059460)
Lima, Lídia. M., Paulo Castro, Alexandre L. Machado, Alberto M. Carlos, Claire Lugnier Fraga, Vera Lúcia Gonçalves De. Moraes, and Eliezer J. Barreiro. 2002. Synthesis and anti-inflammatory activity of phthalimide derivatives, designed as new thalidomide analogues. Bioorganic and Medicinal Chemistry 10: 3067–3073. https://doi.org/10.1016/S0968-0896(02)00152-9 . (PMID: 10.1016/S0968-0896(02)00152-912110331)
Mazzoccoli, Luciano, Silvia H. Cadoso, Giovanni W. Amarante, Marcus V.N., De Souza, Robert Domingues, Marco A. Machado, Mauro V. De Almeida, and Henrique C. Teixeira. 2012. Novel thalidomide analogues from diamines inhibit pro-inflammatory cytokine production and CD80 expression while enhancing IL-10. Biomedicine and Pharmacotherapy 66: 323–329. https://doi.org/10.1016/j.biopha.2012.05.001 . (PMID: 10.1016/j.biopha.2012.05.00122770990)
Campos, H.S., D.G. Xisto, M.B.G. Oliveira, I. Teixeira, E.M. Negri, T. Mauad, D. Carnielli, et al. 2006. Protective effects of phosphodiesterase inhibitors on lung function and remodeling in a murine model of chronic asthma. Brazilian Journal of Medical and Biological Research 39: 283–287. https://doi.org/10.1590/S0100-879X2006000200016 . (PMID: 10.1590/S0100-879X200600020001616470317)
Oliveira, Vinícius Rosa., Giovanna Marcella Cavalcante. Carvalho, Natália Vasconcelos. Casquilho, Maria Diana Moreira-Gomes, Raquel Moraes Soares, F.O. Sandra Maria, Lidia Moreira Azevedo, Eliezer Jesus Lima, Christina Maeda Barreiro, and Takiya, and Walter Araujo Zin. 2018. Lung and liver responses to 1- and 7-day treatments with LASSBio-596 in mice subchronically intoxicated by microcystin-LR. Toxicon 141: 1–8. https://doi.org/10.1016/j.toxicon.2017.10.029 . (PMID: 10.1016/j.toxicon.2017.10.02929097245)
Padilha, Gisele A., Isabela Henriques, Miquéias Lopes-Pacheco, Soraia C. Abreu, Milena V. Oliveira, Marcelo M. Morales, Lidia M. Lima, et al. 2015. Therapeutic effects of LASSBio-596 in an elastase-induced mouse model of emphysema. Frontiers in Physiology 6: 267. https://doi.org/10.3389/fphys.2015.00267 . (PMID: 10.3389/fphys.2015.00267264836984588117)
Rocco, P.R.M., D.P. Momesso, R.C. Figueira, H.C. Ferreira, R.A. Cadete, A. Légora-Machado, V.L.G. Koatz, L.M. Lima, E.J. Barreiro, and W.A. Zin. 2003. Therapeutic potential of a new phosphodiesterase inhibitor in acute lung injury. European Respiratory Journal 22: 20–27. https://doi.org/10.1183/09031936.03.00108603 . (PMID: 10.1183/09031936.03.00108603)
Collier, H.O.J., L.C. Dinneen, Christine A. Johnson, and C. Schneider. 1968. The abdominal constriction response and its suppression by analgesic drugs in the mouse. British Journal of Pharmacology and Chemotherapy 32: 295–310. https://doi.org/10.1111/j.1476-5381.1968.tb00973.x . (PMID: 10.1111/j.1476-5381.1968.tb00973.x42308181570212)
Beirith, Alessandra, Adair R S. Santos, and João. B. Calixto. 2002. Mechanisms underlying the nociception and paw oedema caused by injection of glutamate into the mouse paw. Brain Research 924: 219–228. https://doi.org/10.1016/S0006-8993(01)03240-1 . (PMID: 10.1016/S0006-8993(01)03240-111750907)
Hunskaar, Steinar, and Kjell Hole. 1987. The formalin test in mice: Dissociation between inflammatory and non-inflammatory pain. Pain 30: 103–114. https://doi.org/10.1016/0304-3959(87)90088-1 . (PMID: 10.1016/0304-3959(87)90088-13614974)
Kuraishi, Y., Y. Harada, S. Aratani, M. Satoh, and H. Takagi. 1983. Separate involvement of the spinal noradrenergic and serotonergic systems in morphine analgesia: The differences in mechanical and thermal algesic tests. Brain Research 273: 245–252. https://doi.org/10.1016/0006-8993(83)90849-1 . (PMID: 10.1016/0006-8993(83)90849-16616237)
Dunham, N.W., and T.S. Miya. 1957. A note on a simple apparatus for detecting neurological deficit in rats and mice **College of Pharmacy, University of Nebraska, Lincoln 8. Journal of the American Pharmaceutical Association (Scientific ed.) 46: 208–209. https://doi.org/10.1002/jps.3030460322 . (PMID: 10.1002/jps.3030460322)
Doherty, N.S., P. Poubelle, P. Borgeat, T.H. Beaver, G.L. Westrich, and N.L. Schrader. 1985. Intraperitoneal injection of zymosan in mice induces pain, inflammation and the synthesis of peptidoleukotrienes and prostaglandin E2. Prostaglandins 30: 769–789. https://doi.org/10.1016/0090-6980(85)90006-1 . (PMID: 10.1016/0090-6980(85)90006-13001831)
Winter, Charles A., Edwin A. Risley, and George W. Nuss. 1962. Carrageenin-induced edema in hind paw of the rat as an assay for antiinflammatory drugs. Proceedings of the Society for Experimental Biology and Medicine 111: 544–547. https://doi.org/10.3181/00379727-111-27849 . (PMID: 10.3181/00379727-111-2784914001233)
Akramas, Laimis, Laima Leonaviciene, Ruta Bradunaite, Audrius Vasiliauskas, Irena Dumalakiene, Danguole Zabulyte, Teresa Normantiene, Irena Jonauskiene, and Dalia Vaitkiene. 2017. Antiinflammatory effect of herbal preparations on adjuvant arthritis in rats. Turkish Journal of Veterinary and Animal Sciences 41: 748–756. https://doi.org/10.3906/vet-1704-16 . (PMID: 10.3906/vet-1704-16)
Melchert, Magda, and Alan List. 2007. The thalidomide saga. International Journal of Biochemistry and Cell Biology 39: 1489–1499. https://doi.org/10.1016/j.biocel.2007.01.022 . (PMID: 10.1016/j.biocel.2007.01.02217369076)
Ito, Takumi, Hideki Ando, Takayuki Suzuki, Toshihiko Ogura, Kentaro Hotta, Yoshimasa Imamura, Yuki Yamaguchi, and Hiroshi Handa. 2010. Identification of a primary target of thalidomide teratogenicity. Science 327: 1345–1350. https://doi.org/10.1126/science.1177319 . (PMID: 10.1126/science.117731920223979)
Basbaum, Allan I., Diana M. Bautista, Grégory. Scherrer, and David Julius. 2009. Cellular and molecular mechanisms of pain. Cell 139: 267–284. https://doi.org/10.1016/j.cell.2009.09.028 . (PMID: 10.1016/j.cell.2009.09.028198370312852643)
Le Bars, D., M. Gozariu, and S.W. Cadden. 2001. Animal models of nociception. Pharmacological Reviews 53: 597–652. https://doi.org/10.1002/9783527611942.ch9 . (PMID: 10.1002/9783527611942.ch911734620)
Ribeiro, Ronaldo A., Mariana L. Vale, Sara M. Thomazzi, Adriana B.P.. Paschoalato, Steve Poole, Sergio H. Ferreira, and Fernando Q. Cunha. 2000. Involvement of resident macrophages and mast cells in the writhing nociceptive response induced by zymosan and acetic acid in mice. European Journal of Pharmacology 387: 111–118. https://doi.org/10.1016/S0014-2999(99)00790-6 . (PMID: 10.1016/S0014-2999(99)00790-610633169)
Duarte, I.D.G., M. Nakamura, and S.H. Ferreira. 1988. Participation of the sympathetic system in acetic acid-induced writhing in mice. Brazilian Journal of Medical and Biological Research 21: 341–343. (PMID: 3203167)
Ikeda, Yuri, Akinori Ueno, Hiroaki Naraba, and Sachiko Oh-Ishi. 2001. Involvement of vanilloid receptor VR1 and prostanoids in the acid-induced writhing responses of mice. Life Sciences 69: 2911–2919. https://doi.org/10.1016/S0024-3205(01)01374-1 . (PMID: 10.1016/S0024-3205(01)01374-111720094)
Pavao-De-Souza, Gabriela F., Ana C. Zarpelon, Giovana C. Tedeschi, Sandra S. Mizokami, Joice S. Sanson, Thiago M. Cunha, Sérgio. H. Ferreira, Fernando Q. Cunha, Rubia Casagrande, and Waldiceu A. Verri. 2012. Acetic acid- and phenyl-p-benzoquinone-induced overt pain-like behavior depends on spinal activation of MAP kinases, PI 3K and microglia in mice. Pharmacology Biochemistry and Behavior 101: 320–328. https://doi.org/10.1016/j.pbb.2012.01.018 . (PMID: 10.1016/j.pbb.2012.01.018)
Casquilho, Natália V., Giovanna M.C. Carvalho, João L.C.R. Alves, Mariana N. Machado, Raquel M. Soares, Sandra M.F.O. Azevedo, Lidia M. Lima, et al. 2011. LASSBio 596 per os avoids pulmonary and hepatic inflammation induced by microcystin-LR. Toxicon 58: 195–201. https://doi.org/10.1016/j.toxicon.2011.05.018 . (PMID: 10.1016/j.toxicon.2011.05.01821679722)
Oliveira, Vinícius Rosa., Mariana Barcellos Avila, Giovanna Marcella Cavalcante. Carvalho, F.O. Sandra Maria, Lidia Moreira Azevedo, Eliezer Jesus Lima, Alysson Roncally Barreiro, and Carvalho, and Walter Araujo Zin. . 2015. Investigating the therapeutic effects of LASSBio-596 in an in vivo model of cylindrospermopsin-induced lung injury. Toxicon 94: 29–35. https://doi.org/10.1016/j.toxicon.2014.12.004 . (PMID: 10.1016/j.toxicon.2014.12.00425528385)
Silva, Johnatas Dutra, Gisele Pena De. Oliveira, Cynthia Dos Santos, Carla Cristina Samary, Gisele De Araujo, Araujo Padilha, Costa E. Fernando, Silva Filho, Rosilane Taveira Da. Silva, et al. 2016. Respiratory and systemic effects of LASSBio596 plus surfactant in experimental acute respiratory distress syndrome. Cellular Physiology and Biochemistry 38: 821–835. https://doi.org/10.1159/000443037 . (PMID: 10.1159/00044303726905925)
Kerstein, Patrick C., Donato del Camino, Magdalene M. Moran, and Cheryl L. Stucky. 2009. Pharmacological blockade of TRPA1 inhibits mechanical firing in nociceptors. Molecular Pain 5. BioMed Central: 1744–8069–5–19. https://doi.org/10.1186/1744-8069-5-19 .
McCall, W. D., Kimberly D. Tanner, and Jon D. Levine. 1996. Formalin induces biphasic activity in C-fibers in the rat. Neuroscience Letters 208. Elsevier: 45–48.  https://doi.org/10.1016/0304-3940(96)12552-0 .
Fischer, Michael, Giancarlo Carli, Patrick Raboisson, and Peter Reeh. 2014. The interphase of the formalin test. Pain 155: 511–521. https://doi.org/10.1016/j.pain.2013.11.015 . (PMID: 10.1016/j.pain.2013.11.01524291649)
Granados-Soto, Vinicio, Rosario Alonso-López, Raquel Asomoza-Espinosa, Marcelo O. Rufino, Lucia D. Gomes-Lopes, and Sérgio. H. Ferreira. 2001. Participation of COX, IL-1β and TNFα in formalin-induced inflammatory pain. Proceedings of the Western Pharmacology Society 44: 15–17. (PMID: 11793965)
Ko, Young Kwon, Ann Misun Youn, Boo Hwi Hong, Yoon Hee Kim, Yong Sup Shin, Po Soon Kang, Keon Jung Yoon, and Won Hyung Lee. 2012. Antinociceptive effect of phenyl N-tert-butylnitrone, a free radical scavenger, on the rat formalin test. Korean Journal of Anesthesiology 62: 558–564. https://doi.org/10.4097/kjae.2012.62.6.558 . (PMID: 10.4097/kjae.2012.62.6.558227788933384795)
Casquilho, Natália V., Maria Diana Moreira-Gomes, Clarissa B. Magalhães, Renata T. Okuro, Victor Hugo Ortenzi, Emanuel K. Feitosa-Lima, Lidia M. Lima, et al. 2018. Oxidative imbalance in mice intoxicated by microcystin-LR can be minimized. Toxicon 144: 75–82. https://doi.org/10.1016/j.toxicon.2018.02.008 . (PMID: 10.1016/j.toxicon.2018.02.00829454806)
Carvalho, Giovanna M.C.., Vinícius R. Oliveira, Raquel M. Soares, Sandra M.F.O.. Azevedo, Lidia M. Lima, Eliezer J. Barreiro, Samuel S. Valença, Paulo H.N.. Saldiva, Débora. S. Faffe, and Walter A. Zin. 2010. Can LASSBio 596 and dexamethasone treat acute lung and liver inflammation induced by microcystin-LR? Toxicon 56: 604–612. https://doi.org/10.1016/j.toxicon.2010.06.005 . (PMID: 10.1016/j.toxicon.2010.06.00520547173)
Miotla, Jadwiga M., Mauro M. Teixeira, and Paul G. Hellewell. 1998. Suppression of acute lung injury in mice by an inhibitor of phosphodiesterase type 4. American Journal of Respiratory Cell and Molecular Biology 18: 411–420. https://doi.org/10.1165/ajrcmb.18.3.2913 . (PMID: 10.1165/ajrcmb.18.3.29139490659)
Araujo, G.L., A.E.D. Vieira, E.J. Barreiro, L.M. Lima, C.N. Cardoso, N.F. Emiliano, M.T. Martins, et al. 2014. Toxicological in vitro and subchronic evaluation of LASSBio-596. Food and Chemical Toxicology 73: 148–156. https://doi.org/10.1016/j.fct.2014.07.037 . (PMID: 10.1016/j.fct.2014.07.03725139121)
Calabresi, Emanuele, Fiorella Petrelli, Angelo Francesco Bonifacio, Ilaria Puxeddu, and Alessia Alunno. 2018. One year in review 2018: Pathogenesis of rheumatoid arthritis. Clinical and Experimental Rheumatology 36: 175–184. (PMID: 29716677)
McNamee, Kay, Richard Williams, and Michael Seed. 2015. Animal models of rheumatoid arthritis: How informative are they? European Journal of Pharmacology 759: 278–286. https://doi.org/10.1016/j.ejphar.2015.03.047 . (PMID: 10.1016/j.ejphar.2015.03.04725824900)
Van Der Linden, M.W., S. Van Der Bij, P. Welsing, E.J. Kuipers, and R.M.C. Herings. 2009. The balance between severe cardiovascular and gastrointestinal events among users of selective and non-selective non-steroidal anti-inflammatory drugs. Annals of the Rheumatic Diseases 68: 668–673. https://doi.org/10.1136/ard.2007.087254 . (PMID: 10.1136/ard.2007.08725418495734)
Franchimont, D. 2004. Overview of the actions of glucocorticoids on the immune response: A good model to characterize new pathways of immunosuppression for new treatment strategies. Annals of the New York Academy of Sciences 1024: 124–137. https://doi.org/10.1196/annals.1321.009 . (PMID: 10.1196/annals.1321.00915265777)
Kirkham, Bruce W., Arthur Kavanaugh, and Kristian Reich. 2014. Interleukin-17A: A unique pathway in immune-mediated diseases: Psoriasis, psoriatic arthritis and rheumatoid arthritis. Immunology 141: 133–142. https://doi.org/10.1111/imm.12142 . (PMID: 10.1111/imm.12142238195833904234)
Kim, Eugene Y., and Kamal D. Moudgil. 2017. Immunomodulation of autoimmune arthritis by pro-inflammatory cytokines. Cytokine 98: 87–96. https://doi.org/10.1016/j.cyto.2017.04.012 . (PMID: 10.1016/j.cyto.2017.04.012284385525581685)
Wang, Yang, Chen chen Han, Dongqian Cui, Yifan Li, Yang Ma, and Wei Wei. 2017. Is macrophage polarization important in rheumatoid arthritis? International Immunopharmacology 50. Elsevier: 345–352. https://doi.org/10.1016/j.intimp.2017.07.019 .
Almeida, De., Mauro Vieira, Francisco Martins Teixeira, Marcus Vinicius Nora De. Souza, Giovanni Wilson Amarante, Caio César De Souza. Alves, Sílvia Helena. Cardoso, Ana Márcia. Mattos, Ana Paula Ferreira, and Henrique Couto Teixeira. 2007. Thalidomide analogs from diamines: Synthesis and evaluation as inhibitors of TNF-α production. Chemical and Pharmaceutical Bulletin 55: 223–226. https://doi.org/10.1248/cpb.55.223 . (PMID: 10.1248/cpb.55.22317268092)
Costa, Victor Soares, and Cavalcante. . 2015. High anti-inflammatory activity and low toxicity of thalidomide analogs. Medicinal Chemistry 5: 334–339. https://doi.org/10.4172/2161-0444.1000282 . (PMID: 10.4172/2161-0444.1000282)
Alexandre-Moreira, Magna S., Christina M. Takiya, Luciana B. De Arruda, Bernardo Pascarelli, Raquel N. Gomes, Hugo C. Castro, Faria Neto, Lídia. M. Lima, and Eliezer J. Barreiro. 2005. LASSBio-468: A new achiral thalidomide analogue which modulates TNF-α and NO production and inhibits endotoxic shock and arthritis in an animal model. International Immunopharmacology 5: 485–494. https://doi.org/10.1016/j.intimp.2004.10.017 . (PMID: 10.1016/j.intimp.2004.10.01715683845)
Li, Ping, Ying Zheng, and Xin Chen. 2017. Drugs for autoimmune inflammatory diseases: From small molecule compounds to anti-TNF biologics. Frontiers in Pharmacology 8: 460. https://doi.org/10.3389/fphar.2017.00460 . (PMID: 10.3389/fphar.2017.00460287852205506195)
معلومات مُعتمدة: 573.564/2008-6 cnpq; E-26/170.020/2008 faperj; 07/2015 capes/fapeal
فهرسة مساهمة: Keywords: Anti-inflammatory; Anti-nociceptive; LASSBio-596; Rheumatoid arthritis; Thalidomide
المشرفين على المادة: 0 (Analgesics)
0 (Anti-Inflammatory Agents)
0 (LASSBIO596)
0 (Phthalic Acids)
0 (Plant Extracts)
0 (Sulfonamides)
تواريخ الأحداث: Date Created: 20211026 Date Completed: 20220401 Latest Revision: 20220401
رمز التحديث: 20231215
DOI: 10.1007/s10753-021-01564-2
PMID: 34697722
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-2576
DOI:10.1007/s10753-021-01564-2