دورية أكاديمية

A conserved mechanism for regulating replisome disassembly in eukaryotes.

التفاصيل البيبلوغرافية
العنوان: A conserved mechanism for regulating replisome disassembly in eukaryotes.
المؤلفون: Jenkyn-Bedford M; MRC Laboratory of Molecular Biology, Cambridge, UK., Jones ML; MRC Laboratory of Molecular Biology, Cambridge, UK., Baris Y; MRC Laboratory of Molecular Biology, Cambridge, UK., Labib KPM; MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, UK., Cannone G; MRC Laboratory of Molecular Biology, Cambridge, UK., Yeeles JTP; MRC Laboratory of Molecular Biology, Cambridge, UK. jyeeles@mrc-lmb.cam.ac.uk., Deegan TD; MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, UK. tdeegan@ed.ac.uk.; MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK. tdeegan@ed.ac.uk.
المصدر: Nature [Nature] 2021 Dec; Vol. 600 (7890), pp. 743-747. Date of Electronic Publication: 2021 Oct 26.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: DNA Replication* , Eukaryota*/genetics, Cryoelectron Microscopy ; DNA/metabolism ; DNA Helicases/metabolism ; Humans ; Ubiquitin-Protein Ligases/metabolism
مستخلص: Replisome disassembly is the final step of eukaryotic DNA replication and is triggered by ubiquitylation of the CDC45-MCM-GINS (CMG) replicative helicase 1-3 . Despite being driven by evolutionarily diverse E3 ubiquitin ligases in different eukaryotes (SCF Dia2 in budding yeast 1 , CUL2 LRR1 in metazoa 4-7 ), replisome disassembly is governed by a common regulatory principle, in which ubiquitylation of CMG is suppressed before replication termination, to prevent replication fork collapse. Recent evidence suggests that this suppression is mediated by replication fork DNA 8-10 . However, it is unknown how SCF Dia2 and CUL2 LRR1 discriminate terminated from elongating replisomes, to selectively ubiquitylate CMG only after termination. Here we used cryo-electron microscopy to solve high-resolution structures of budding yeast and human replisome-E3 ligase assemblies. Our structures show that the leucine-rich repeat domains of Dia2 and LRR1 are structurally distinct, but bind to a common site on CMG, including the MCM3 and MCM5 zinc-finger domains. The LRR-MCM interaction is essential for replisome disassembly and, crucially, is occluded by the excluded DNA strand at replication forks, establishing the structural basis for the suppression of CMG ubiquitylation before termination. Our results elucidate a conserved mechanism for the regulation of replisome disassembly in eukaryotes, and reveal a previously unanticipated role for DNA in preserving replisome integrity.
(© 2021. The Author(s).)
References: Maric, M., Maculins, T., De Piccoli, G. & Labib, K. Cdc48 and a ubiquitin ligase drive disassembly of the CMG helicase at the end of DNA replication. Science 346, 1253596 (2014). (PMID: 10.1126/science.1253596)
Moreno, S. P., Bailey, R., Campion, N., Herron, S. & Gambus, A. Polyubiquitylation drives replisome disassembly at the termination of DNA replication. Science 346, 477–481 (2014). (PMID: 10.1126/science.1253585)
Dewar, J. M., Budzowska, M. & Walter, J. C. The mechanism of DNA replication termination in vertebrates. Nature 525, 345–350 (2015). (PMID: 10.1038/nature14887)
Dewar, J. M., Low, E., Mann, M., Raschle, M. & Walter, J. C. CRL2 Lrr1 promotes unloading of the vertebrate replisome from chromatin during replication termination. Genes Dev. 31, 275–290 (2017). (PMID: 10.1101/gad.291799.116)
Sonneville, R. et al. CUL-2 LRR-1 and UBXN-3 drive replisome disassembly during DNA replication termination and mitosis. Nat. Cell Biol. 19, 468–479 (2017). (PMID: 10.1038/ncb3500)
Villa, F. et al. CUL2 LRR1 , TRAIP and p97 control CMG helicase disassembly in the mammalian cell cycle. EMBO Rep. 22, e52164 (2021). (PMID: 10.15252/embr.202052164)
Fan, Y. et al. LRR1-mediated replisome disassembly promotes DNA replication by recycling replisome components. J. Cell Biol. 220, e202009147 (2021). (PMID: 10.1083/jcb.202009147)
Deegan, T. D., Mukherjee, P. P., Fujisawa, R., Polo Rivera, C. & Labib, K. CMG helicase disassembly is controlled by replication fork DNA, replisome components and a ubiquitin threshold. eLife 9, e60371 (2020). (PMID: 10.7554/eLife.60371)
Low, E., Chistol, G., Zaher, M. S., Kochenova, O. V. & Walter, J. C. The DNA replication fork suppresses CMG unloading from chromatin before termination. Genes Dev. 34, 1534–1545 (2020). (PMID: 10.1101/gad.339739.120)
Vrtis, K. B. et al. Single-strand DNA breaks cause replisome disassembly. Mol. Cell 81, 1309–1318.e6 (2021). (PMID: 10.1016/j.molcel.2020.12.039)
Labib, K., Tercero, J. A. & Diffley, J. F. Uninterrupted MCM2-7 function required for DNA replication fork progression. Science 288, 1643–1647 (2000). (PMID: 10.1126/science.288.5471.1643)
Fu, Y. V. et al. Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase. Cell 146, 931–941 (2011). (PMID: 10.1016/j.cell.2011.07.045)
Baretić, D. et al. Cryo-EM structure of the fork protection complex bound to CMG at a replication fork. Mol. Cell 78, 926–940.e13 (2020). (PMID: 10.1016/j.molcel.2020.04.012)
Deegan, T. D., Baxter, J., Ortiz Bazan, M. A., Yeeles, J. T. P. & Labib, K. P. M. Pif1-family helicases support fork convergence during DNA replication termination in eukaryotes. Mol. Cell 74, 231–244.e9 (2019). (PMID: 10.1016/j.molcel.2019.01.040)
Langston, L. D. & O’Donnell, M. E. An explanation for origin unwinding in eukaryotes. eLife 8, e46515 (2019). (PMID: 10.7554/eLife.46515)
Plechanovova, A., Jaffray, E. G., Tatham, M. H., Naismith, J. H. & Hay, R. T. Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis. Nature 489, 115–120 (2012). (PMID: 10.1038/nature11376)
Kawakami, T. et al. NEDD8 recruits E2-ubiquitin to SCF E3 ligase. EMBO J. 20, 4003–4012 (2001). (PMID: 10.1093/emboj/20.15.4003)
Xie, P. et al. The covalent modifier Nedd8 is critical for the activation of Smurf1 ubiquitin ligase in tumorigenesis. Nat. Commun. 5, 3733 (2014). (PMID: 10.1038/ncomms4733)
Goswami, P. et al. Structure of DNA-CMG-Polε elucidates the roles of the non-catalytic polymerase modules in the eukaryotic replisome. Nat. Commun. 9, 5061 (2018). (PMID: 10.1038/s41467-018-07417-1)
Zhou, J. C. et al. CMG-Polε dynamics suggests a mechanism for the establishment of leading-strand synthesis in the eukaryotic replisome. Proc. Natl Acad. Sci. USA 114, 4141–4146 (2017). (PMID: 10.1073/pnas.1700530114)
Sun, J. et al. The architecture of a eukaryotic replisome. Nat. Struct. Mol. Biol. 22, 976–982 (2015). (PMID: 10.1038/nsmb.3113)
Maric, M., Mukherjee, P., Tatham, M. H., Hay, R. & Labib, K. Ufd1-Npl4 recruit Cdc48 for disassembly of ubiquitylated CMG helicase at the end of chromosome replication. Cell Rep. 18, 3033–3042 (2017). (PMID: 10.1016/j.celrep.2017.03.020)
Zheng, N. et al. Structure of the Cul1–Rbx1–Skp1–F box Skp2 SCF ubiquitin ligase complex. Nature 416, 703–709 (2002). (PMID: 10.1038/416703a)
Morohashi, H., Maculins, T. & Labib, K. The amino-terminal TPR domain of Dia2 tethers SCF Dia2 to the replisome progression complex. Curr. Biol. 19, 1943–1949 (2009). (PMID: 10.1016/j.cub.2009.09.062)
Maculins, T., Nkosi, P. J., Nishikawa, H. & Labib, K. Tethering of SCF Dia2 to the replisome promotes efficient ubiquitylation and disassembly of the CMG helicase. Curr. Biol. 25, 2254–2259 (2015). (PMID: 10.1016/j.cub.2015.07.012)
Dewar, J. M. & Walter, J. C. Mechanisms of DNA replication termination. Nat. Rev. Mol. Cell Biol. 18, 507–516 (2017). (PMID: 10.1038/nrm.2017.42)
Li, N. et al. Structure of the eukaryotic MCM complex at 3.8 A. Nature 524, 186–191 (2015). (PMID: 10.1038/nature14685)
Jones, M. L., Baris, Y., Taylor, M. R. G. & Yeeles, J. T. P. Structure of a human replisome shows the organisation and interactions of a DNA replication machine. EMBO J. https://doi.org/10.15252/embj.2021108819 (2021).
Cardote, T. A. F., Gadd, M. S. & Ciulli, A. Crystal structure of the Cul2-Rbx1-EloBC-VHL ubiquitin ligase complex. Structure 25, 901–911.e3 (2017). (PMID: 10.1016/j.str.2017.04.009)
Xia, Y., Fujisawa, R., Deegan, T. D., Sonneville, R. & Labib, K. P. M. TIMELESS-TIPIN and UBXN-3 promote replisome disassembly during DNA replication termination in Caenorhabditis elegans. EMBO J. 40, e108053 (2021). (PMID: 10.15252/embj.2021108053)
Eickhoff, P. et al. Molecular basis for ATP-hydrolysis-driven DNA translocation by the CMG helicase of the eukaryotic replisome. Cell Rep. 28, 2673–2688.e8 (2019). (PMID: 10.1016/j.celrep.2019.07.104)
Yuan, Z. et al. DNA unwinding mechanism of a eukaryotic replicative CMG helicase. Nat. Commun. 11, 688 (2020). (PMID: 10.1038/s41467-020-14577-6)
Champasa, K., Blank, C., Friedman, L. J., Gelles, J. & Bell, S. P. A conserved Mcm4 motif is required for Mcm2-7 double-hexamer formation and origin DNA unwinding. eLife 8, e45538 (2019). (PMID: 10.7554/eLife.45538)
Hogg, M. et al. Structural basis for processive DNA synthesis by yeast DNA polymerase varepsilon. Nat. Struct. Mol. Biol. 21, 49–55 (2014). (PMID: 10.1038/nsmb.2712)
Yuan, Z., Georgescu, R., Schauer, G. D., O’Donnell, M. E. & Li, H. Structure of the polymerase ε holoenzyme and atomic model of the leading strand replisome. Nat. Commun. 11, 3156 (2020). (PMID: 10.1038/s41467-020-16910-5)
Martin, E. C. et al. LRRpredictor—a new LRR motif detection method for irregular motifs of plant NLR proteins using an ensemble of classifiers. Genes 11, 286 (2020). (PMID: 10.3390/genes11030286)
Schulman, B. A. et al. Insights into SCF ubiquitin ligases from the structure of the Skp1–Skp2 complex. Nature 408, 381–386 (2000). (PMID: 10.1038/35042620)
Xing, W. et al. SCF FBXL3 ubiquitin ligase targets cryptochromes at their cofactor pocket. Nature 496, 64–68 (2013). (PMID: 10.1038/nature11964)
Noguchi, Y. et al. Cryo-EM structure of Mcm2-7 double hexamer on DNA suggests a lagging-strand DNA extrusion model. Proc. Natl Acad. Sci. USA 114, E9529–E9538 (2017). (PMID: 10.1073/pnas.1712537114)
Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018). (PMID: 10.1107/S2059798318006551)
معلومات مُعتمدة: 24558 United Kingdom CRUK_ Cancer Research UK; MC_U105184326 United Kingdom MRC_ Medical Research Council; MC_UP_1201/12 United Kingdom MRC_ Medical Research Council; United Kingdom WT_ Wellcome Trust; MC_UU_00018/4 United Kingdom MRC_ Medical Research Council
المشرفين على المادة: 9007-49-2 (DNA)
EC 2.3.2.27 (Ubiquitin-Protein Ligases)
EC 3.6.4.- (DNA Helicases)
تواريخ الأحداث: Date Created: 20211026 Date Completed: 20220419 Latest Revision: 20240313
رمز التحديث: 20240313
مُعرف محوري في PubMed: PMC8695382
DOI: 10.1038/s41586-021-04145-3
PMID: 34700328
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-021-04145-3