دورية أكاديمية

Motor sequences; separating the sequence from the motor. A longitudinal rsfMRI study.

التفاصيل البيبلوغرافية
العنوان: Motor sequences; separating the sequence from the motor. A longitudinal rsfMRI study.
المؤلفون: Jäger AP; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany. annatheklajaeger@gmail.com.; Center for Stroke Research Berlin (CSB), Charité-Universitätsmedizin Berlin, Berlin, Germany. annatheklajaeger@gmail.com., Huntenburg JM; Neuroscience Programme, Champalimaud Research, Lisbon, Portugal., Tremblay SA; Department of Physics/Perform Center, Concordia University, Montreal, QC, Canada.; Montreal Heart Institute, Montreal, QC, Canada., Schneider U; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany., Grahl S; Clinic of Neurology, Technical University Munich, Munich, Germany., Huck J; Department of Physics/Perform Center, Concordia University, Montreal, QC, Canada., Tardif CL; Department of Biomedical Engineering, McGill University, Montreal, QC, Canada.; Montreal Neurological Institute, Montreal, QC, Canada., Villringer A; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.; Center for Stroke Research Berlin (CSB), Charité-Universitätsmedizin Berlin, Berlin, Germany.; Clinic for Cognitive Neurology, Leipzig, Germany.; IFB Adiposity Diseases, Leipzig University Medical Centre, Leipzig, Germany.; Collaborative Research Centre 1052-A5, University of Leipzig, Leipzig, Germany., Gauthier CJ; Department of Physics/Perform Center, Concordia University, Montreal, QC, Canada.; Montreal Heart Institute, Montreal, QC, Canada., Bazin PL; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.; Faculty of Social and Behavioral Sciences, University of Amsterdam, Amsterdam, Netherlands., Steele CJ; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.; Department of Psychology, Concordia University, Montreal, QC, Canada.
المصدر: Brain structure & function [Brain Struct Funct] 2022 Apr; Vol. 227 (3), pp. 793-807. Date of Electronic Publication: 2021 Oct 27.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 101282001 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1863-2661 (Electronic) Linking ISSN: 18632653 NLM ISO Abbreviation: Brain Struct Funct Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer-Verlag, c2007-
مواضيع طبية MeSH: Brain Mapping* , Motor Cortex*/diagnostic imaging, Learning ; Magnetic Resonance Imaging ; Rest
مستخلص: In motor learning, sequence specificity, i.e. the learning of specific sequential associations, has predominantly been studied using task-based fMRI paradigms. However, offline changes in resting state functional connectivity after sequence-specific motor learning are less well understood. Previous research has established that plastic changes following motor learning can be divided into stages including fast learning, slow learning and retention. A description of how resting state functional connectivity after sequence-specific motor sequence learning (MSL) develops across these stages is missing. This study aimed to identify plastic alterations in whole-brain functional connectivity after learning a complex motor sequence by contrasting an active group who learned a complex sequence with a control group who performed a control task matched for motor execution. Resting state fMRI and behavioural performance were collected in both groups over the course of 5 consecutive training days and at follow-up after 12 days to encompass fast learning, slow learning, overall learning and retention. Between-group interaction analyses showed sequence-specific decreases in functional connectivity during overall learning in the right supplementary motor area (SMA). We found that connectivity changes in a key region of the motor network, the superior parietal cortex (SPC) were not a result of sequence-specific learning but were instead linked to motor execution. Our study confirms the sequence-specific role of SMA that has previously been identified in online task-based learning studies, and extends it to resting state network changes after sequence-specific MSL.
(© 2021. The Author(s).)
References: Abraham A, Pedregosa F, Eickenberg M, Gervais P, Mueller A, Kossaifi J, Gramfort A, Thirion B, Varoquaux G (2014) Machine learning for neuroimaging with scikit-learn. Front Neuroinform. https://doi.org/10.3389/fninf.2014.00014. (PMID: 10.3389/fninf.2014.00014246003883930868)
Albert NB, Robertson EM, Miall RC (2009) The resting human brain and motor learning. Curr Biol 19(12):1023–1027. https://doi.org/10.1016/j.cub.2009.04.028. (PMID: 10.1016/j.cub.2009.04.028194272102701987)
Avants BB, Tustison N, Song G (2009) Advanced normalization tools (ANTS). Insight J 2:1–35.
Bazin P-L, Weiss M, Dinse J, Schäfer A, Trampel R, Turner R (2014) A computational framework for ultra-high resolution cortical segmentation at 7Tesla. Neuroimage 93:201–209. https://doi.org/10.1016/j.neuroimage.2013.03.077. (PMID: 10.1016/j.neuroimage.2013.03.07723623972)
Behzadi Y, Restom K, Liau J, Liu TT (2007) A component based noise correction method (CompCor) for bold and perfusion based fMRI. Neuroimage 37(1):90–101. https://doi.org/10.1016/j.neuroimage.2007.04.042. (PMID: 10.1016/j.neuroimage.2007.04.04217560126)
Bengtsson SL, Nagy Z, Skare S, Forsman L, Forssberg H, Ullén F (2005) Extensive piano practicing has regionally specific effects on white matter development. Nat Neurosci 8(9):1148–1150. https://doi.org/10.1038/nn1516. (PMID: 10.1038/nn151616116456)
Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magn Reson Med 34(4):537–541. https://doi.org/10.1002/mrm.1910340409. (PMID: 10.1002/mrm.19103404098524021)
Bullmore ET, Bassett DS (2011) Brain graphs: graphical models of the human brain connectome. Annu Rev Clin Psychol 7(1):113–140. https://doi.org/10.1146/annurev-clinpsy-040510-143934. (PMID: 10.1146/annurev-clinpsy-040510-14393421128784)
Carey JR, Bhatt E, Nagpal A (2005) Neuroplasticity promoted by task complexity. Exerc Sport Sci Rev 33(1):24–31. (PMID: 15640717)
Coynel D, Marrelec G, Perlbarg V, Pélégrini-Issac M, Van de Moortele P-F, Ugurbil K, Doyon J, Benali H, Lehéricy S (2010) Dynamics of motor-related functional integration during motor sequence learning. Neuroimage 49(1):759–766. https://doi.org/10.1016/j.neuroimage.2009.08.048. (PMID: 10.1016/j.neuroimage.2009.08.04819716894)
Cusack R, Brett M, Osswald K (2003) An evaluation of the use of magnetic field maps to undistort echo-planar images. Neuroimage 18(1):127–142. https://doi.org/10.1006/nimg.2002.1281. (PMID: 10.1006/nimg.2002.128112507450)
Dayan E, Cohen LG (2011) Neuroplasticity subserving motor skill learning. Neuron 72(3):443–454. https://doi.org/10.1016/j.neuron.2011.10.008. (PMID: 10.1016/j.neuron.2011.10.008220785043217208)
Doyon J, Benali H (2005) Reorganization and plasticity in the adult brain during learning of motor skills. Curr Opin Neurobiol 15(2):161–167. https://doi.org/10.1016/j.conb.2005.03.004. (PMID: 10.1016/j.conb.2005.03.00415831397)
Doyon J, Gabitov E, Vahdat S, Lungu O, Boutin A (2018) Current issues related to motor sequence learning in humans. Curr Opin Behav Sci 20:89–97. https://doi.org/10.1016/j.cobeha.2017.11.012. (PMID: 10.1016/j.cobeha.2017.11.012)
Elsinger CL, Harrington DL, Rao SM (2006) From preparation to online control: reappraisal of neural circuitry mediating internally generated and externally guided actions. Neuroimage 31(3):1177–1187. https://doi.org/10.1016/j.neuroimage.2006.01.041. (PMID: 10.1016/j.neuroimage.2006.01.04116540347)
Gaymard B, Pierrot-Deseilligny C, Rivaud S (1990) Impairment of sequences of memory-guided saccades after supplementary motor area lesions. Ann Neurol 28(5):622–626. https://doi.org/10.1002/ana.410280504. (PMID: 10.1002/ana.4102805042260848)
Gerloff C, Corwell B, Chen R, Hallett M, Cohen LG (1997) Stimulation over the human supplementary motor area interferes with the organization of future elements in complex motor sequences. Brain 120:1587–1602. https://doi.org/10.1093/brain/120.9.1587 (Pt 9). (PMID: 10.1093/brain/120.9.15879313642)
Gorgolewski KJ, Esteban O, Burns C, Ziegler E, Pinsard B, Madison C, Waskom M, Ellis DG, Clark D, Dayan M, Manhães-Savio A, Notter MP, Johnson H, Dewey BE, Halchenko YO, Hamalainen C, Keshavan A, Clark D, Huntenburg JM, Ghosh S (2016) Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python 0.12.0-rc1. Zenodo. https://doi.org/10.5281/zenodo.50186.
Grafton ST, Hazeltine E, Ivry RB (1998) Abstract and effector-specific representations of motor sequences identified with PET. J Neurosci 18(22):9420–9428. https://doi.org/10.1523/JNEUROSCI.18-22-09420.1998. (PMID: 10.1523/JNEUROSCI.18-22-09420.199898013806792894)
Grafton ST, Hazeltine E, Ivry RB (2002) Motor sequence learning with the nondominant left hand. Exp Brain Res 146(3):369–378. https://doi.org/10.1007/s00221-002-1181-y. (PMID: 10.1007/s00221-002-1181-y12232693)
Gregory MD, Agam Y, Selvadurai C, Nagy A, Vangel M, Tucker M, Robertson EM, Stickgold R, Manoach DS (2014) Resting state connectivity immediately following learning correlates with subsequent sleep-dependent enhancement of motor task performance. Neuroimage 102(02):666–673. https://doi.org/10.1016/j.neuroimage.2014.08.044. (PMID: 10.1016/j.neuroimage.2014.08.04425173415)
Gryga M, Taubert M, Dukart J, Vollmann H, Conde V, Sehm B, Villringer A, Ragert P (2012) Bidirectional gray matter changes after complex motor skill learning. Front Syst Neurosci. https://doi.org/10.3389/fnsys.2012.00037. (PMID: 10.3389/fnsys.2012.00037226239143353266)
Guerra-Carrillo B, Mackey AP, Bunge SA (2014) Resting-state fMRI: a window into human brain plasticity. Neuroscientist 20(5):522–533. https://doi.org/10.1177/1073858414524442. (PMID: 10.1177/107385841452444224561514)
Hardwick RM, Rottschy C, Miall RC, Eickhoff SB (2013) A quantitative meta-analysis and review of motor learning in the human brain. Neuroimage 67:283–297. https://doi.org/10.1016/j.neuroimage.2012.11.020. (PMID: 10.1016/j.neuroimage.2012.11.02023194819)
Hazeltine E (2001) Ipsilateral sensorimotor regions and motor sequence learning. Trends Cogn Sci 5(7):281–282. https://doi.org/10.1016/S1364-6613(00)01702-2. (PMID: 10.1016/S1364-6613(00)01702-211425606)
Hikosaka O, Nakahara H, Rand MK, Sakai K, Lu X, Nakamura K, Miyachi S, Doya K (1999) Parallel neural networks for learning sequential procedures. Trends Neurosci 22(10):464–471. (PMID: 10.1016/S0166-2236(99)01439-3)
Jenkins I, Brooks D, Nixon P, Frackowiak R, Passingham R (1994) Motor sequence learning: a study with positron emission tomography. J Neurosci 14(6):3775–3790. https://doi.org/10.1523/JNEUROSCI.14-06-03775.1994. (PMID: 10.1523/JNEUROSCI.14-06-03775.199482074876576955)
Jenkinson M (2004) Improving the registration of B0- distorted EPI images using calculated cost function weights. 10th International Conference on Functional Mapping of the Human Brain.
Karim HT, Huppert TJ, Erickson KI, Wollam ME, Sparto PJ, Sejdić E, VanSwearingen JM (2017) Motor sequence learning-induced neural efficiency in functional brain connectivity. Behav Brain Res 319:87–95. https://doi.org/10.1016/j.bbr.2016.11.021. (PMID: 10.1016/j.bbr.2016.11.02127845228)
Krakauer JW, Hadjiosif AM, Xu J, Wong AL, Haith AM (2019) Motor learning. Compr Physiol 9(2):613–663. https://doi.org/10.1002/cphy.c170043. (PMID: 10.1002/cphy.c1700433087358330873583)
Lacourse MG, Orr ELR, Cramer SC, Cohen MJ (2005) Brain activation during execution and motor imagery of novel and skilled sequential hand movements. Neuroimage 27(3):505–519. https://doi.org/10.1016/j.neuroimage.2005.04.025. (PMID: 10.1016/j.neuroimage.2005.04.02516046149)
Lee D, Quessy S (2003) Activity in the supplementary motor area related to learning and performance during a sequential visuomotor task. J Neurophysiol 89(2):1039–1056. https://doi.org/10.1152/jn.00638.2002. (PMID: 10.1152/jn.00638.200212574479)
Lenth R, Singmann H, Love J, Buerkner P, Herve M (2018) Emmeans: estimated marginal means, aka least-squares means. R Package Version 1(1):3.
Lewis CM, Baldassarre A, Committeri G, Romani GL, Corbetta M (2009) Learning sculpts the spontaneous activity of the resting human brain. Proc Natl Acad Sci 106(41):17558–17563. https://doi.org/10.1073/pnas.0902455106. (PMID: 10.1073/pnas.0902455106198050612762683)
Lin (Janice) C-H, Chiang M-C, Wu AD, Iacoboni M, Udompholkul P, Yazdanshenas O, Knowlton BJ (2012) Age related differences in the neural substrates of motor sequence learning after interleaved and repetitive practice. Neuroimage 62(3):2007–2020. https://doi.org/10.1016/j.neuroimage.2012.05.015. (PMID: 10.1016/j.neuroimage.2012.05.015)
Lohmann G, Margulies DS, Horstmann A, Pleger B, Lepsien J, Goldhahn D, Schloegl H, Stumvoll M, Villringer A, Turner R (2010) Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain. PLoS ONE 5(4):e10232. https://doi.org/10.1371/journal.pone.0010232. (PMID: 10.1371/journal.pone.0010232204369112860504)
Lohse KR, Wadden K, Boyd LA, Hodges NJ (2014) Motor skill acquisition across short and long time scales: a meta-analysis of neuroimaging data. Neuropsychologia 59:130–141. https://doi.org/10.1016/j.neuropsychologia.2014.05.001. (PMID: 10.1016/j.neuropsychologia.2014.05.00124831923)
Ma L, Narayana S, Robin DA, Fox PT, Xiong J (2011) Changes occur in resting state network of motor system during 4 weeks of motor skill learning. Neuroimage 58(1):226–233. https://doi.org/10.1016/j.neuroimage.2011.06.014. (PMID: 10.1016/j.neuroimage.2011.06.01421689765)
Mallol R, Barrós-Loscertales A, López M, Belloch V, Parcet MA, Ávila C (2007) Compensatory cortical mechanisms in Parkinson’s disease evidenced with fMRI during the performance of pre-learned sequential movements. Brain Res 1147:265–271. https://doi.org/10.1016/j.brainres.2007.02.046. (PMID: 10.1016/j.brainres.2007.02.04617368575)
Marques JP, Kober T, Krueger G, van der Zwaag W, Van de Moortele P-F, Gruetter R (2010) MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. NeuroImage 49(2):1271–1281. https://doi.org/10.1016/j.neuroimage.2009.10.002. (PMID: 10.1016/j.neuroimage.2009.10.00219819338)
Mary A, Wens V, Op de Beeck M, Leproult R, De Tiège X, Peigneux P (2017) Resting-state functional connectivity is an age-dependent predictor of motor learning abilities. Cereb Cortex (new York, NY) 27(10):4923–4932. https://doi.org/10.1093/cercor/bhw286. (PMID: 10.1093/cercor/bhw286)
Müller R-A, Kleinhans N, Pierce K, Kemmotsu N, Courchesne E (2002) Functional MRI of motor sequence acquisition: effects of learning stage and performance. Cogn Brain Res 14(2):277–293. https://doi.org/10.1016/S0926-6410(02)00131-3. (PMID: 10.1016/S0926-6410(02)00131-3)
Mushiake H, Inase M, Tanji J (1991) Neuronal activity in the primate premotor, supplementary, and precentral motor cortex during visually guided and internally determined sequential movements. J Neurophysiol 66(3):705–718. https://doi.org/10.1152/jn.1991.66.3.705. (PMID: 10.1152/jn.1991.66.3.7051753282)
Mutha PK, Sainburg RL, Haaland KY (2011) Left parietal regions are critical for adaptive visuomotor control. J Neurosci 31(19):6972–6981. https://doi.org/10.1523/JNEUROSCI.6432-10.2011. (PMID: 10.1523/JNEUROSCI.6432-10.2011215622593107546)
Narayana S, Laird AR, Tandon N, Franklin C, Lancaster JL, Fox PT (2012) Electrophysiological and functional connectivity of the human supplementary motor area. Neuroimage 62(1):250–265. https://doi.org/10.1016/j.neuroimage.2012.04.060. (PMID: 10.1016/j.neuroimage.2012.04.06022569543)
Oullier O, Jantzen KJ, Steinberg FL, Kelso JAS (2005) Neural substrates of real and imagined sensorimotor coordination. Cereb Cortex 15(7):975–985. https://doi.org/10.1093/cercor/bhh198. (PMID: 10.1093/cercor/bhh19815563729)
Penhune VB, Steele CJ (2012) Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning. Behav Brain Res 226(2):579–591. https://doi.org/10.1016/j.bbr.2011.09.044. (PMID: 10.1016/j.bbr.2011.09.04422004979)
Poldrack R, Mumford J, Nichols T (2011) Handbook of functional MRI data analysis. Cambridge University Press, Cambridge. (PMID: 10.1017/CBO9780511895029)
Roche A (2011) A four-dimensional registration algorithm with application to joint correction of motion and slice timing in fMRI. IEEE Trans Med Imaging 30(8):1546–1554. https://doi.org/10.1109/TMI.2011.2131152. (PMID: 10.1109/TMI.2011.213115221427017)
Rosenbaum DA, Kenny SB, Derr MA (1983) Hierarchical control of rapid movement sequences. J Exp Psychol 9(1):86–102.
Säfström D, Domellöf E (2018) Brain activations supporting linking of action phases in a sequential manual task. Neuroimage 172:608–619. https://doi.org/10.1016/j.neuroimage.2018.02.014. (PMID: 10.1016/j.neuroimage.2018.02.01429428579)
Sami S, Miall RC (2013) Graph network analysis of immediate motor-learning induced changes in resting state BOLD. Front Hum Neurosci. https://doi.org/10.3389/fnhum.2013.00166. (PMID: 10.3389/fnhum.2013.00166237206163654214)
Sami S, Robertson EM, Miall RC (2014) The time course of task-specific memory consolidation effects in resting state networks. J Neurosci 34(11):3982–3992. https://doi.org/10.1523/JNEUROSCI.4341-13.2014. (PMID: 10.1523/JNEUROSCI.4341-13.2014246237763951697)
Scholz J, Klein MC, Behrens TEJ, Johansen-Berg H (2009) Training induces changes in white-matter architecture. Nat Neurosci 12(11):1370–1371. https://doi.org/10.1038/nn.2412. (PMID: 10.1038/nn.2412198207072770457)
Seidler RD, Purushotham A, Kim S-G, Uğurbil K, Willingham D, Ashe J (2002) Cerebellum activation associated with performance change but not motor learning. Science 296(5575):2043–2046. https://doi.org/10.1126/science.1068524. (PMID: 10.1126/science.106852412065841)
Shibasaki H, Sadato N, Lyshkow H, Yonekura Y, Honda M, Nagamine T, Suwazono S, Magata Y, Ikeda A, Miyazaki M, Fukuyama H, Asato R, Konishi J (1993) Both primary motor cortex and supplementary motor area play an important role in complex finger movement. Brain 116(6):1387–1398. https://doi.org/10.1093/brain/116.6.1387. (PMID: 10.1093/brain/116.6.13878293277)
Shima K, Tanji J (2000) Neuronal activity in the supplementary and presupplementary motor areas for temporal organization of multiple movements. J Neurophysiol 84(4):2148–2160. https://doi.org/10.1152/jn.2000.84.4.2148. (PMID: 10.1152/jn.2000.84.4.214811024102)
Singmann H, Bolker B, Westfall J, Aust F (2018) afex: analysis of factorial experiments. R package version 0.20-2.
Steel A, Thomas C, Trefler A, Chen G, Baker CI (2019) Finding the baby in the bath water—evidence for task-specific changes in resting state functional connectivity evoked by training. Neuroimage 188:524–538. https://doi.org/10.1016/j.neuroimage.2018.12.038. (PMID: 10.1016/j.neuroimage.2018.12.03830578926)
Steele CJ, Penhune VB (2010) Specific increases within global decreases: a functional magnetic resonance imaging investigation of five days of motor sequence learning. J Neurosci 30(24):8332–8341. https://doi.org/10.1523/JNEUROSCI.5569-09.2010. (PMID: 10.1523/JNEUROSCI.5569-09.2010205548846634594)
Tanaka S, Honda M, Hanakawa T, Cohen LG (2010) Differential contribution of the supplementary motor area to stabilization of a procedural motor skill acquired through different practice schedules. Cereb Cortex (new York, NY) 20(9):2114–2121. https://doi.org/10.1093/cercor/bhp276. (PMID: 10.1093/cercor/bhp276)
Tanji J, Shima K (1994) Role for supplementary motor area cells in planning several movements ahead. Nature 371(6496):413–416. https://doi.org/10.1038/371413a0. (PMID: 10.1038/371413a08090219)
Taubert M, Villringer A, Ragert P (2012) Learning-related gray and white matter changes in humans: an update. Neuroscientist 18(4):320–325. https://doi.org/10.1177/1073858411419048. (PMID: 10.1177/107385841141904822013150)
Thomas C, Baker CI (2013) Teaching an adult brain new tricks: a critical review of evidence for training-dependent structural plasticity in humans. Neuroimage 73:225–236. https://doi.org/10.1016/j.neuroimage.2012.03.069. (PMID: 10.1016/j.neuroimage.2012.03.06922484409)
Vahdat S, Darainy M, Milner TE, Ostry DJ (2011) Functionally specific changes in resting-state sensorimotor networks following motor learning. J Neurosci 31(47):16907–16915. https://doi.org/10.1523/JNEUROSCI.2737-11.2011. (PMID: 10.1523/JNEUROSCI.2737-11.2011221142613260885)
van Mier H, Tempel LW, Perlmutter JS, Raichle ME, Petersen SE (1998) Changes in brain activity during motor learning measured with PET: effects of hand of performance and practice. J Neurophysiol 80(4):2177–2199. https://doi.org/10.1152/jn.1998.80.4.2177. (PMID: 10.1152/jn.1998.80.4.21779772270)
Vollmann H, Conde V, Sewerin S, Taubert M, Sehm B, Witte OW, Villringer A, Ragert P (2013) Anodal transcranial direct current stimulation (tDCS) over supplementary motor area (SMA) but not pre-SMA promotes short-term visuomotor learning. Brain Stimul 6(2):101–107. https://doi.org/10.1016/j.brs.2012.03.018. (PMID: 10.1016/j.brs.2012.03.01822659022)
Wang J, Zuo X, He Y (2010) Graph-based network analysis of resting-state functional MRI. Front Syst Neurosci. https://doi.org/10.3389/fnsys.2010.00016. (PMID: 10.3389/fnsys.2010.00016207400792927302)
Waters S, Wiestler T, Diedrichsen J (2017) Cooperation not competition: bihemispheric tDCS and fMRI show role for ipsilateral hemisphere in motor learning. J Neurosci 37(31):7500–7512. https://doi.org/10.1523/JNEUROSCI.3414-16.2017. (PMID: 10.1523/JNEUROSCI.3414-16.2017286741745546115)
Wiestler T, Diedrichsen J (2013) Skill learning strengthens cortical representations of motor sequences. Elife 2:e00801. https://doi.org/10.7554/eLife.00801. (PMID: 10.7554/eLife.00801238537143707182)
Wink AM, de Munck JC, van der Werf YD, van den Heuvel OA, Barkhof F (2012) Fast eigenvector centrality mapping of voxel-wise connectivity in functional magnetic resonance imaging: implementation, validation, and interpretation. Brain Connect 2(5):265–274. https://doi.org/10.1089/brain.2012.0087. (PMID: 10.1089/brain.2012.008723016836)
Witt ST, Laird AR, Meyerand ME (2008) Functional neuroimaging correlates of finger-tapping task variations: an ALE meta-analysis. Neuroimage 42(1):343–356. https://doi.org/10.1016/j.neuroimage.2008.04.025. (PMID: 10.1016/j.neuroimage.2008.04.02518511305)
Woo C-W, Krishnan A, Wager TD (2014) Cluster-extent based thresholding in fMRI analyses: pitfalls and recommendations. Neuroimage 91:412–419. https://doi.org/10.1016/j.neuroimage.2013.12.058. (PMID: 10.1016/j.neuroimage.2013.12.05824412399)
Wymbs NF, Grafton ST (2015) The human motor system supports sequence-specific representations over multiple training-dependent timescales. Cereb Cortex (new York, NY) 25(11):4213–4225. https://doi.org/10.1093/cercor/bhu144. (PMID: 10.1093/cercor/bhu144)
Xiong J, Ma L, Wang B, Narayana S, Duff EP, Egan GF, Fox PT (2009) Long-term motor training induced changes in regional cerebral blood flow in both task and resting states. Neuroimage 45(1):75–82. https://doi.org/10.1016/j.neuroimage.2008.11.016. (PMID: 10.1016/j.neuroimage.2008.11.01619100845)
Yokoi A, Diedrichsen J (2019) Neural organization of hierarchical motor sequence representations in the human neocortex. Neuron. https://doi.org/10.1016/j.neuron.2019.06.017. (PMID: 10.1016/j.neuron.2019.06.01731345643)
Zuo X-N, Ehmke R, Mennes M, Imperati D, Castellanos FX, Sporns O, Milham MP (2012) Network centrality in the human functional connectome. Cereb Cortex (new York, NY) 22(8):1862–1875. https://doi.org/10.1093/cercor/bhr269. (PMID: 10.1093/cercor/bhr269)
معلومات مُعتمدة: RGPIN-2020-06812 Science and Engineering Research Council; RGPIN 2015-04665 Science and Engineering Research Council
فهرسة مساهمة: Keywords: Motor sequence learning; Sequence specificity; rsfMRI
تواريخ الأحداث: Date Created: 20211027 Date Completed: 20220321 Latest Revision: 20220429
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC8930963
DOI: 10.1007/s00429-021-02412-7
PMID: 34704176
قاعدة البيانات: MEDLINE
الوصف
تدمد:1863-2661
DOI:10.1007/s00429-021-02412-7