دورية أكاديمية

Changes of stem cell niche during experimental pituitary tumor development.

التفاصيل البيبلوغرافية
العنوان: Changes of stem cell niche during experimental pituitary tumor development.
المؤلفون: Guido CB; Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina., Sosa LDV; Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina., Perez PA; Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina., Zlocoswki N; Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina., Velazquez FN; CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina., Gutierrez S; Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina., Petiti JP; Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina., Mukdsi JH; Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina., Torres AI; Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina.
المصدر: Journal of neuroendocrinology [J Neuroendocrinol] 2021 Dec; Vol. 33 (12), pp. e13051. Date of Electronic Publication: 2021 Oct 27.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley & Sons Country of Publication: United States NLM ID: 8913461 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2826 (Electronic) Linking ISSN: 09538194 NLM ISO Abbreviation: J Neuroendocrinol Subsets: MEDLINE
أسماء مطبوعة: Publication: <2010->: Malden, MA : Wiley & Sons
Original Publication: Eynsham, Oxon, UK : Oxford University Press, c1989-
مواضيع طبية MeSH: Adenoma/*pathology , Pituitary Neoplasms/*pathology , Stem Cell Niche/*physiology, Animals ; Cell Differentiation ; Cell Proliferation ; Cells, Cultured ; Female ; Neoplastic Stem Cells/pathology ; Neoplastic Stem Cells/physiology ; Pituitary Gland/pathology ; Pituitary Gland/physiology ; Rats ; Rats, Inbred F344 ; Tumor Microenvironment/physiology
مستخلص: To investigate the putative stem cell/tumor stem cell (SC/TSC) niche contribution to hyperplasic/adenomatous pituitary lesions, we analyzed variation in the pituitary stem cell population during the development of experimental pituitary tumors. Pituitary tumors were induced in female F344 rats with estradiol benzoate for 5, 10, 20 and 30 days. Cells positive for GFRa2, Sox2, Sox9, Nestin, CD133 and CD44 were identified in the marginal zone and in the adenoparenchyma in both control and 30D groups, with predominant adenoparenchyma localization of GRFa2 and SOX9 found in tumoral pituitaries. GFRa2, Nestin, CD133 and CD44 were upregulated at the initial stages of tumor growth, whereas Sox9 significantly decreased at 5D, with Sox2 remaining invariable during the hyperplasic/adenomatous development. In addition, isolated pituispheres from normal and tumoral pituitary glands enriched in SC/TSC were characterized. Pituispheres from the 30D glands were positive for the above-mentioned markers and showed a significant increase in the proliferation. In conclusion, our data revealed pituitary SC pool fluctuations during hyperplastic/adenomatous development, with differential localization of the SC/TSC niche in this process. These findings may help to provide a better understanding of these cell populations, which is crucial for achieving advancements in the field of pituitary tumor biology.
(© 2021 British Society for Neuroendocrinology.)
References: Melmed S. Mechanisms for pituitary tumorigenesis: the plastic pituitary. J Clin Investig. 2003;112:1603-1618.
Perez-Castro C, Renner U, Haedo MR, Stalla GK, Arzt E. Cellular and molecular specificity of pituitary gland physiology. Physiol Rev. 2012;92:1-38.
Hashi A, Mazawa S, Kato J, Arita J. Pentobarbital anesthesia during the proestrous afternoon blocks lactotroph proliferation occurring on estrus in female rats. Endocrinology. 1995;136:4665-4671.
Haggi ES, Torres AI, Maldonado CA, Aoki A. Regression of redundant lactotrophs in rat pituitary gland after cessation of lactation. J Endocrinol. 1986;111:367-373.
Toledano Y, Zonis S, Ren S-G, Wawrowsky K, Chesnokova V, Melmed S. Estradiol partially recapitulates murine pituitary cell cycle response to pregnancy. Endocrinology. 2012;153:5011-5022.
Vankelecom H. Non-hormonal cell types in the pituitary candidating for stem cell. Semin Cell Dev Biol. 2007;18:559-570.
Vankelecom H. Pituitary stem/progenitor cells: embryonic players in the adult gland? Eur J Neuorsci. 2010;32:2063-2081.
Vankelecom H in Stem Cells in Neuroendocrinology (eds D. Pfaff & Y. Christen) 81-101 (2016). https://www.ncbi.nlm.nih.gov/books/NBK435792/.
Yoshida S, Kato T, Kato Y. Regulatory system for stem/progenitor cell niches in the adult rodent pituitary. Int J Mol Sci. 2016;17:75.
Chen J, Hersmus N, Duppen VV, Caesens P, Denef C, Vankelecom H. The adult pituitary contains a cell population displaying stem/progenitor cell and early embryonic characteristics. Endocrinology. 2005;146:3985-3998.
Garcia-Lavandeira M, Diaz-Rodriguez E, Bahar D, et al. Pituitary cell turnover: from adult stem cell recruitment through differentiation to death. Neuroendocrinology. 2015;101:175-192.
Carreno G, Gonzalez-Meljem JM, Haston S, Martinez-Barbera JP. Stem cells and their role in pituitary tumorigenesis. Mol Cell Endocrinol. 2017;445:27-34.
Hsu YC, Li L, Fuchs E. Emerging interactions between skin stem cells and their niches. Nat Med. 2014;20:847-856.
Garcia-Lavandeira M, et al. A GRFa2/Prop1/stem (GPS) cell niche in the pituitary. PLoS One. 2009;4:e4815.
Fu Q, Gremeaux L, Luque RM, et al. The adult pituitary shows stem/progenitor cell activation in response to injury and is capable of regeneration. Endocrinology. 2012;153:3224-3235.
Rizzoti K, Akiyama H, Lovell-Badge R. Mobilized adult pituitary stem cells contribute to endocrine regeneration in response to physiological demand. Cell Stem Cell. 2013;13:419-432.
Neradil J, Veselska R. Nestin as a marker of cancer stem cells. Cancer Sci. 2015;106:803-811.
Yoshida S, Nishimura N, Ueharu H, et al. Isolation of adult pituitary stem/progenitor cell clusters located in the parenchyma of the rat anterior lobe. Stem Cell Res. 2016;17:318-329.
Wang J, Xu S-L, Duan J-J, et al. Invasion of white matter tracts by glioma stem cells is regulated by a NOTCH1-SOX2 positive-feedback loop. Nat Neurosci. 2019;22:91-105.
Chen J, Gremeaux L, Fu Q, Liekens D, Van Laere S, Vankelecom H. Pituitary progenitor cells tracked down by side population dissection. Stem Cells. 2009;27:1182-1195.
Yoshida S, Kato T, Susa T, Cai L-Y, Nakayama M, Kato Y. PROP1 coexists with SOX2 and induces PIT1-commitment cells. Biochem Biophys Res Comm. 2009;385:11-15.
Higuchi M, Yoshida S, Ueharu H, Chen MO, Kato T, Kato Y. PRRX1 and PRRX2 distinctively participate in pituitary organogenesis and a cell-supply system. Cell Tissue Res. 2014;357:323-335.
Vaca AM, Guido CB, Sosa LDV, et al. The expansion of adult stem/progenitor cells and their marker expression fluctuations are linked with pituitary plastic adaptation during gestation and lactancy. Am J Physiol Endocrinol Metab. 2016;311:E367-379.
Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell. 2014;14:275-291.
Nakanishi Y, Seno H, Fukuoka A, et al. Dclk1 distinguishes between tumor and normal stem cells in the intestine. Nat Genet. 2013;45:98-103.
Schepers A, Clevers H. Wnt signaling, stem cells, and cancer of the gastrointestinal tract. Cold Spring Harb Perspect Biol. 2012;4:a007989.
Zomer A, Ellenbroek SIJ, Ritsma L, et al. Intravital imaging of cancer stem cell plasticity in mammary tumors. Stem Cells. 2013;31:602-606.
Atashzar MR, Baharlou R, Karami J, et al. Cancer stem cells: a review from origin to therapeutic implications. J Cell Physiol. 2020;235:790-803.
Mantovani G, Giardino E, Treppiedi D, et al. Stem cells in pituitary tumors: experimental evidence supporting their existence and their role in tumor clinical behavior. Front Endocrinol. 2019;10:745.
Mertens F, Gremeaux L, Chen J, et al. Pituitary tumors contain a side population with tumor stem cell-associated characteristics. Endocr Relat Cancer. 2015;22:481-504.
Würth R, Thellung S, Corsaro A, Barbieri F, Florio T. Experimental evidence and clinical implications of pituitary adenoma stem cells. Front Endocrinol. 2020;11:54.
Yunoue S, Arita K, Kawano H, Uchida H, Tokimura H, Hirano H. Identification of CD133+ cells in pituitary adenomas. Neuroendocrinology. 2011;94:302-312.
Würth R, Barbieri F, Pattarozzi A, et al. Phenotypical and pharmacological characterization of stem-like cells in human pituitary adenomas. Mol Neurobiol. 2017;54:4879-4895.
Gao Z, Cai L, Lu J, et al. Expression of stem cell markers and dopamine D2 receptors in human and rat prolactinomas. Med Sci Monit. 2017;23:1827-1833.
Capatina C, Cimpean AM, Raica M, Coculescu M, Poiana C. SOX 2 expression in human pituitary adenomas-correlations with pituitary function. In Vivo. 2019;33:79-83.
Xing B, Kong YG, Yao Y, et al. Study on the expression levels of CXCR4, CXCL12, CD44, and CD147 and their potential correlation with invasive behaviors of pituitary adenomas. Biomed Environ Sci. 2013;26:592-598.
Xu Q, Yuan X, Tunici P, et al. Isolation of tumour stem-like cells from benign tumours. Br J Cancer. 2009;101:303-311.
Donangelo I, Ren S-G, Eigler T, Svendsen C, Melmed S. Sca1+ murine pituitary adenoma cells show tumor-growth advantage. Endocrine-Related Cancer. 2014;21:203-216. https://doi.org/10.1530/erc-13-0229.
Xu RK, Wu XM, Di AK, Xu JN, Pang CS, Pang SF. Pituitary prolactin-secreting tumor formation: recent developments. Biol Signals Receptors. 2000;9:1-20.
Heaney AP, Melmed S. Pituitary tumour transforming gene: a novel factor in pituitary tumour formation. Bailliere's best practice & research. Clin Endocrinol Metab. 1999;13:367-380.
Sahores A, Luque GM, Wargon V, et al. Novel, low cost, highly effective, handmade steroid pellets for experimental studies. PLoS One. 2013;8:e64049.
Sabatino ME, Petiti JP, Sosa LDV, et al. Evidence of cellular senescence during the development of estrogen-induced pituitary tumors. Endocr Relat Cancer. 2015;22:299-317.
Rizzoti K. Adult pituitary progenitors/stem cells: from in vitro characterization to in vivo function. Eur J Neurosci. 2010;32:2053-2062.
Zhao H, Yan C, Yibing HU, et al. Sphereforming assay vs. organoid culture: determining longterm stemness and the chemoresistant capacity of primary colorectal cancer cells. Int J Oncol. 2019;54:893-904.
Wabik A, Jones PH. Switching roles: the functional plasticity of adult tissue stem cells. EMBO J. 2015;34:1164-1179.
Garcia-Lavandeira M, Saez C, Diaz-Rodriguez E, et al. Craniopharyngiomas express embryonic stem cell markers (SOX2, OCT4, KLF4, and SOX9) as pituitary stem cells but do not coexpress RET/GFRA3 receptors. J Clin Endocrinol Metab. 2012;97:E80-87.
Takeda K, Mizushima T, Yokoyama Y, et al. Sox2 is associated with cancer stem-like properties in colorectal cancer. Sci Rep. 2018;8:17639.
Richtig G, Aigelsreiter A, Schwarzenbacher D, et al. SOX9 is a proliferation and stem cell factor in hepatocellular carcinoma and possess widespread prognostic significance in different cancer types. PLoS One. 2017;12:e0187814.
Melmed S. Pituitary tumors. Endocrinol Metab Clin North Am. 2015;44:1-9.
Andoniadou CL, Matsushima D, Mousavy Gharavy S, et al. Sox2(+) stem/progenitor cells in the adult mouse pituitary support organ homeostasis and have tumor-inducing potential. Cell Stem Cell. 2013;13:433-445.
Larsimont JC, Youssef K, Sánchez-Danés A, et al. Sox9 controls self-renewal of oncogene targeted cells and links tumor initiation and invasion. Cell Stem Cell. 2015;17:60-73.
Chen L, Ye H, Wang X, et al. Evidence of brain tumor stem progenitor-like cells with low proliferative capacity in human benign pituitary adenoma. Cancer Lett. 2014;349:61-66.
Chang CV, Araujo RV, Cirqueira CS, et al. Differential expression of stem cell markers in human adamantinomatous craniopharyngioma and pituitary adenoma. Neuroendocrinology. 2017;104:183-193.
Krupkova O Jr, Loja T, Redova M, et al. Analysis of nuclear nestin localization in cell lines derived from neurogenic tumors. Tumour Biol. 2011;32:631-639.
Zhang Y, Wang J, Huang W, et al. Nuclear Nestin deficiency drives tumor senescence via lamin A/C-dependent nuclear deformation. Nat Commun. 2018;9:3613.
Yoshida S, Kato T, Kato Y. EMT involved in migration of stem/progenitor cells for pituitary development and regeneration. J Clin Med. 2016;5:43.
Daynac M, Petritsch CK. Regulation of asymmetric cell division in mammalian neural stem and cancer precursor cells. Results Probl Cell Differ. 2017;61:375-399.
Fauquier T, Rizzoti K, Dattani M, Lovell-Badge R, Robinson IC. SOX2-expressing progenitor cells generate all of the major cell types in the adult mouse pituitary gland. Proc Natl Acad Sci USA. 2008;105:2907-2912.
Weiss S, Siebzehnrübl FA, Kreutzer J, Blümcke I, Buslei R. Evidence for a progenitor cell population in the human pituitary. Clin Neuropathol. 2009;28:309-318.
Šošić-Jurjević B, Ajdžanović V, Miljić D, et al. Pituitary hyperplasia, hormonal changes and prolactinoma development in males exposed to estrogens-an insight from translational studies. Int J Mol Sci. 2020;21(6):2024.
Chen BI, Ye P, Chen Y, et al. Involvement of the estrogen and progesterone axis in cancer stemness: elucidating molecular mechanisms and clinical significance. Front Oncol. 2020;10:1657.
فهرسة مساهمة: Keywords: SC markers; pituispheres; pituitary stem cell; pituitary tumor
تواريخ الأحداث: Date Created: 20211028 Date Completed: 20220321 Latest Revision: 20220321
رمز التحديث: 20240628
DOI: 10.1111/jne.13051
PMID: 34708474
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-2826
DOI:10.1111/jne.13051