دورية أكاديمية

Dietary pectin caused great changes in bile acid profiles of Pelteobagrus fulvidraco.

التفاصيل البيبلوغرافية
العنوان: Dietary pectin caused great changes in bile acid profiles of Pelteobagrus fulvidraco.
المؤلفون: Cao X; School of Basic Medicine and Biological Science, Soochow University, Suzhou, 215123, People's Republic of China. caoxiamin@163.com., Ren S; School of Basic Medicine and Biological Science, Soochow University, Suzhou, 215123, People's Republic of China., Cai C; School of Basic Medicine and Biological Science, Soochow University, Suzhou, 215123, People's Republic of China. caicf@suda.edu.cn., Ni Q; School of Basic Medicine and Biological Science, Soochow University, Suzhou, 215123, People's Republic of China., Li X; School of Basic Medicine and Biological Science, Soochow University, Suzhou, 215123, People's Republic of China., Meng Y; School of Basic Medicine and Biological Science, Soochow University, Suzhou, 215123, People's Republic of China., Meng Z; School of Basic Medicine and Biological Science, Soochow University, Suzhou, 215123, People's Republic of China., Shi Y; School of Basic Medicine and Biological Science, Soochow University, Suzhou, 215123, People's Republic of China., Chen H; Jiangsu Fisheries Technology Promotion Center, Nanjing, 210036, People's Republic of China., Jiang R; Wuxi Sanzhi Biotech Co., Ltd, Wuxi, 214101, People's Republic of China., Wu P; School of Basic Medicine and Biological Science, Soochow University, Suzhou, 215123, People's Republic of China., Ye Y; School of Basic Medicine and Biological Science, Soochow University, Suzhou, 215123, People's Republic of China.
المصدر: Fish physiology and biochemistry [Fish Physiol Biochem] 2021 Dec; Vol. 47 (6), pp. 2015-2025. Date of Electronic Publication: 2021 Oct 28.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic Publishers Country of Publication: Netherlands NLM ID: 100955049 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-5168 (Electronic) Linking ISSN: 09201742 NLM ISO Abbreviation: Fish Physiol Biochem Subsets: MEDLINE
أسماء مطبوعة: Publication: Dordrecht ; Boston : Kluwer Academic Publishers
Original Publication: Amsterdam ; Berkeley : Kugler, 1986-
مواضيع طبية MeSH: Bile Acids and Salts*/analysis , Catfishes*, Pectins/*administration & dosage, Animals ; Diet/veterinary ; Liver ; Tandem Mass Spectrometry ; Taurine
مستخلص: To reveal the impact of dietary fiber (DF) on the bile acid (BA) profiles of fish, yellow catfish (Pelteobagrus fulvidraco) were fed a diet containing 300 g kg -1 dextrin (CON diet, control) or pectin (a type of soluble DF, PEC diet) for 7 days, and then the BA profiles were analyzed by UHPLC-MS/MS. A total of 26 individuals of BAs were detected in the fish body, with 8, 10, 14, and 22 individuals of BAs detected in the liver, serum, bile, and hindgut digesta, respectively. The conjugated BAs (CBAs) of fish were dominated by taurine CBAs (TCBAs). The concentrations of free BAs (FBAs) and the value of FBAs/CBAs in the bile of fish fed the PEC diet were nearly 5 and 7 times higher, respectively than those in fish fed the CON diet. The value of glycine CBAs/TCBAs in the liver, serum and bile of fish fed the PEC diet was significantly lower, and in the hindgut digesta was higher than that of fish fed the CON diet (P < 0.05). These results suggested that dietary pectin greatly changed the BA profiles of Pelteobagrus fulvidraco, attributed to inhibition of reabsorption of BAs. Therefore, attention should be paid to the impact on BA homeostasis when replacing fishmeal with DF-rich plant ingredients in the fish diet.
(© 2021. The Author(s), under exclusive licence to Springer Nature B.V.)
References: Aguilar-Olivos NE, Carrillo-Cordova D, Oria-Hernandez J, Sanchez-Valle V, Ponciano-Rodriguez G, Ramirez-Jaramillo M, Chable-Montero F, Chavez-Tapia NC, Uribe M, Mendez-Sanchez N (2015) The nuclear receptor FXR, but not LXR, up-regulates bile acid transporter expression in non-alcoholic fatty liver disease. Annals Hepatology 14(4):487–493. https://doi.org/10.1016/S1665-2681(19)31170-6. (PMID: 10.1016/S1665-2681(19)31170-6)
Cai CF, Ren SJ, Cui GT, Ni Q, Li XY, Meng YH, Meng ZJ, Zhang JB, Su X, Chen HG, Jiang R, Lu JQ, Ye YT, Cao XM (2020a) Short-term stress due to dietary pectin induces cholestasis, and chronic stress induces hepatic steatosis and fibrosis in yellow catfish. Pelteobagrus Fulvidraco Aquaculture 516:734607. https://doi.org/10.1016/j.aquaculture.2019.734607. (PMID: 10.1016/j.aquaculture.2019.734607)
Cai Y, Folkerts J, Folkerts G, Maurer M, Braber S (2020b) Microbiota-dependent and -independent effects of dietary fibre on human health. The British Pharmacological Society 177:1363–1381. https://doi.org/10.1111/bph.14871. (PMID: 10.1111/bph.14871)
Chiang JYL (2004) Regulation of bile acid synthesis: pathways, nuclear receptors, and mechanisms. J Hepatol 40(3):539–551. https://doi.org/10.1016/j.jhep.2003.11.006. (PMID: 10.1016/j.jhep.2003.11.00615123373)
Cheng J, Jiang X, Li J, Zhou S, Chen H (2019) Xyloglucan affects gut-liver circulating bile acid metabolism to improve liver damage in mice fed with high-fat diet. Journal of Functional Foods 64:103651. https://doi.org/10.1016/j.jff.2019.103651. (PMID: 10.1016/j.jff.2019.103651)
Flis M, Sobotka W, Antoszkiewicz Z (2017) Fiber substrates in the nutrition of weaned piglets – a review. Annals of Animal Science 17(3):627–643. https://doi.org/10.1515/aoas-2016-0077. (PMID: 10.1515/aoas-2016-0077)
Fu XW, Xiao Y, Golden J, Niu SZ, Gayer CP (2020) Serum bile acids profiling by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and its application on pediatric liver and intestinal diseases. Clin Chem Lab Med 58(5):787–797. https://doi.org/10.1515/cclm-2019-0354. (PMID: 10.1515/cclm-2019-035431639099)
Ghaffarzadegan T, Zhong YD, Hållenius FF, Margareta N (2018) Effects of barley variety, dietary fiber and β-glucan content on bile acid composition in cecum of rats fed low- and high-fat diets. J Nutr Biochem 53:104–110. https://doi.org/10.1016/j.jnutbio.2017.10.008. (PMID: 10.1016/j.jnutbio.2017.10.00829202273)
Goto T, Takagi S, Ichiki T, Sakai T, Endo M, Yoshida T, Ukawa M, Murata H (2001) Studies on the green liver in cultured red sea bream fed low level and non-fish meal diets: relationship between hepatic taurine and biliverdin levels. Fish Sci 67(1):58–63. https://doi.org/10.1046/j.1444-2906.2001.00199.x. (PMID: 10.1046/j.1444-2906.2001.00199.x)
Gunness P, Flanagan BM, Mata JP, Gilbert EP, Gidley MJ (2016) Molecular interactions of a model bile salt and porcine bile with (1,3:1,4)-β-glucans and arabinoxylans probed by 13 C NMR and SAXS. Food Chem 197:676–685. https://doi.org/10.1016/j.foodchem.2015.10.104. (PMID: 10.1016/j.foodchem.2015.10.10426617003)
Gunness P, Gidley MJ (2010) Mechanisms underlying the cholesterol-lowering properties of soluble dietary fibre polysaccharides. Food Funct 1(2):149–155. https://doi.org/10.1039/c0fo00080a. (PMID: 10.1039/c0fo00080a21776465)
Hagey LR, Iida T, Tamegai H, Ogawa S, Une M, Asahina K, Mushiake K, Goto T, Mano N, Goto J, Krasowski MD, Hofmann AF (2010) Major biliary bile acids of the medaka (Oryzias latipes): 25R-and 25S-epimers of 3α,7α,12α-trihydroxy- 5β-cholestanoic Acid. Zoolog Sci 27(7):565–573. https://doi.org/10.2108/zsj.27.565. (PMID: 10.2108/zsj.27.565206088452901895)
Han J, Liu Y, Wang R, Yang J, Ling V, Borchers CH (2015) Metabolic profiling of bile acids in human and mouse blood by LC-MA/MA in combination with phospholipid-depletion solid-phase extraction. Anal Chem 87(2):1127–1136. https://doi.org/10.1021/ac503816u. (PMID: 10.1021/ac503816u25496250)
Heidaria R, Ghanbarinejad V, Mohammadi H, Ahmadi A, Ommati MM, Abdoli N, Aghaei F, Esfandiari A, Azarpira N, Niknahad H (2018) Mitochondria protection as a mechanism underlying the hepatoprotective effects of glycine in cholestatic mice. Biomed Pharmacother 97:1086–1095. https://doi.org/10.1016/j.biopha.2017.10.166. (PMID: 10.1016/j.biopha.2017.10.166)
Jha R, Berrocoso JD (2015) Review: dietary fiber utilization and its effects on physiological functions and gut health of swine. Animal 9:1441–1452. https://doi.org/10.1017/S1751731115000919. (PMID: 10.1017/S1751731115000919259974374574174)
Jia W, Xie GX, Jia WP (2018) Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol 15:111–128. https://doi.org/10.1038/nrgastro.2017.119. (PMID: 10.1038/nrgastro.2017.11929018272)
Johnson MR, Barnes S, Kwakye JB, Diasio RB (1991) Purification and characterization of bile acid-CoA: amino acid N-acyltransferase from human liver. J Biol Chem 266(16):10227–10233. https://doi.org/10.5254/1.3538517. (PMID: 10.5254/1.35385172037576)
Killenberg PG, Jordan JT (1978) Purification and characterization of bile acid-CoA: amino acid N-acyltransferase from rat liver. J Biol Chem 253(4):1005–1010. https://doi.org/10.1016/0020-711X(78)90073-3. (PMID: 10.1016/0020-711X(78)90073-3624713)
Kim SK, Kim KG, Kim KD, Kim KW, Son MH, Rust M, Johnson R (2014) Effect of dietary taurine levels on the conjugated bile acid composition and growth of juvenile Korean rockfish Sebastes schlegeli (Hilgendorf). Aquaculture Research 46(11): 2768–2775(8). https://doi.org/10.1111/are.12431.
Kim SK, Takeuchi T, Akimoto A, Furuita F, Yamamoto T, Yokoyama M, Murata H (2005) Effect of taurine supplemented practical diet on growth performance and taurine contents in whole body and tissues of juvenile Japanese flounder. Fish Sci 71:627–632. https://doi.org/10.1111/j.1444-2906.2005.01008.x. (PMID: 10.1111/j.1444-2906.2005.01008.x)
Kortner TM, Penn MH, Bjӧrkhem I, Måsøval K, Krogdahl Å (2016) Bile components and lecithin supplemented to plant based diets do not diminish diet related intestinal inflammation in Atlantic salmon. BMC Vet Res 12(1):190–199. https://doi.org/10.1186/s12917-016-0819-0. (PMID: 10.1186/s12917-016-0819-0276041335015236)
Kotzamanis Y, Kumar V, Tsironi T, Grigorakis K, Ilia V, Vatsos I, Brezas A, Eys JV, Gisbert E (2020) Taurine supplementation in high-soy diets affects fillet quality of European sea bass (Dicentrarchus labrax). Aquaculture 520:734655. https://doi.org/10.1016/j.aquaculture.2019.734655. (PMID: 10.1016/j.aquaculture.2019.734655)
Li M, Cai SY, Boyer JL (2017) Mechanisms of bile acid mediated inflammation in the liver. Mol Med Rep 56:45–53. https://doi.org/10.1016/j.mam.2017.06.001. (PMID: 10.1016/j.mam.2017.06.001)
Li M, Liu SX, Wang MY, Hu HW, Yin JW, Liu M, Ding ZB, Huang YK (2019) Diagnosis and treatment value of detecting fecal primary and secondary bile acid in infants with infantile cholestatic hepatopathy. Chinese Journal of Practical Pediatrics 34(4), 295–298. https://doi.org/10.19538/j.ek2019040611.
Li MY, Zhou H, Ding YC, Liu ZH, Sun J, Li ZQ (2020a) Effects of gut microbiota on bile acid profile and bile acid metabolism in piglets. Biotechnology Bulletin 36(10): 46–61. https://doi.org/10.13560/j.cnki.biotech.bull.1985.2020-0269.
Li S, Jia ZH, Wei XR, Ma S, Lu TC, Li TT, Gu YY (2020b) Role of bile acid on maintaining metabolic homeostasis. Journal of Shanghai Jiao Tong University Medical Science 40(8):1126–1130. https://doi.org/10.3969/j.issn.1674-8115. (PMID: 10.3969/j.issn.1674-8115)
Li T, Chiang JYL (2009) Regulation of bile acid and cholesterol metabolism by PPARs. PPAR Res 20:501739. https://doi.org/10.1155/2009/501739. (PMID: 10.1155/2009/501739)
Lin S, Yang XM, Long YR, Zhong HJ (2020) Dietary supplementation with Lactobacillus plantarum modified gut microbiota, bile acid profile and glucose homoeostasis in weaning piglets. Br J Nutr 124(8):797–808. https://doi.org/10.1017/S0007114520001774. (PMID: 10.1017/S000711452000177432436488)
Martins N, Diógenes AF, Magalhães R, Matas I, Oliva-Teles A, Peres H (2021) Dietary taurine supplementation affects lipid metabolism and improves the oxidative status of European seabass (Dicentrarchus labrax) juveniles. Aquaculture 531:735820. https://doi.org/10.1016/j.aquaculture.2020.735820. (PMID: 10.1016/j.aquaculture.2020.735820)
Marica C, Elena P, Oihane GI, Antonio M (2017) Nuclear receptor FXR, bile acids and liver damage: introducing the progressive familial intrahepatic cholestasis with FXR mutations. Biochim Biophys Acta Mol Basis Dis 4:1308–1318. https://doi.org/10.1016/j.bbadis.2017.09.019. (PMID: 10.1016/j.bbadis.2017.09.019)
Nguyen A, Bouscarel B (2008) Bile acids and signal transduction: role in glucose homeostasis. Cell Signal 20(12):2180–2197. https://doi.org/10.1016/j.cellsig.2008.06.014. (PMID: 10.1016/j.cellsig.2008.06.01418634871)
Ni Q, Cai CF, Ren SJ, Zhang JB, Zhao YJ, Wei XY, Ge YY, Wang CR, Li WJ, Wu P, Ye YT, Cao XM (2021) Pectin and soybean meal induce stronger inflammatory responses and dysregulation of bile acid (BA) homeostasis than cellulose and cottonseed meal, respectively, in largemouth bass (Micropterus salmoides), which might be attributed to their BA binding capacity. Aquac Res 52:2963–2979. https://doi.org/10.1111/are.15140. (PMID: 10.1111/are.15140)
Penman SL, Sharma P, Aerts H, Park BK, Weaver RJ, Chadwick AE (2019) Differential toxic effects of bile acid mixtures in isolated mitochondria and physiologically relevant HepaRG cells. Toxicol in Vitro 61:104595. https://doi.org/10.1016/j.tiv.2019.104595. (PMID: 10.1016/j.tiv.2019.104595312880736853172)
Ren SJ, Cai CF, Cui GT, Ni Q, Jiang R, Su X, Wang QQ, Chen W, Zhang JB, Wu P, Lu JQ, Ye YT (2020) High dosages of pectin and cellulose cause different degrees of damage to the livers and intestines of Pelteobagrus fulvidraco. Aquaculture 514:734445. https://doi.org/10.1016/j.aquaculture.2019.734445. (PMID: 10.1016/j.aquaculture.2019.734445)
Ridlon JM, Heidi D, Lindsey L, Alyssa V, Mythen S, Saravanan D, Lina S, Gabriel P, Isaac C, Daniel S, Kakiyama G, Nittono H, Purna K, McCracken V, Joao A (2018) Su-1939 bile acid 7α-dehydroxylating gut clostridia: from comparative genomics to in vivo metatranscriptomics and metabolomics to gene discovery. Gastroenterology 154(6): S-639-S-640. https://doi.org/10.1016/S0016-5085(18)32285-6.
Roda G, Porru E, Katsanos K, Skamnelos A, Kyriakidi K, Fiorino G, Christodoulou D, Danese S, Roda A (2019) Serum bile acids profiling in inflammatory bowel disease patients treated with anti-TNFs. Cells 8(8):817. https://doi.org/10.3390/cells8080817. (PMID: 10.3390/cells80808176721523)
Satriyo TB, Galaviz MA, Salze G, López LM (2017) Assessment of dietary taurine essentiality on the physiological state of juvenile Totoaba macdonaldi. Aquac Res 48(11):5677–5689. https://doi.org/10.1111/are.13391. (PMID: 10.1111/are.13391)
Shaik FB, Prasad DVR, Narala VR (2015) Role of farnesoid X receptor in inflammation and resolution. Inflamm Res 64:9–20. https://doi.org/10.1007/s00011-014-0780-y. (PMID: 10.1007/s00011-014-0780-y25376338)
Singh J, Metrani R, Shivanagoudra S, Jayaprakasha GK, Patil BS (2019) Review on bile acids: effects of the gut microbiome, interactions with dietary fiber, and alterations in the bioaccessibility of bioactive compounds. J Agric Food Chem 67:9124–9138. https://doi.org/10.1021/acs.jafc.8b07306. (PMID: 10.1021/acs.jafc.8b0730630969768)
Singh V, Yeoh BS, Chassaing B, Xiao X, Saha P, Olvera RA, Lapek JD, Zhang LM, Wang WB, Hao SJ, Flythe MD, Gonzalez DJ, Cani PD, Conejo-Garcia JR, Xiong N, Kennett MJ, Joe B, Patterson AD, Gewirtz AT, Vijay-Kumar M (2018) Dysregulated microbial fermentation of soluble fiber induces cholestatic liver cancer. Cell 175:679–694. https://doi.org/10.1016/j.cell.2018.09.004. (PMID: 10.1016/j.cell.2018.09.004303400406232850)
Slopianka M, Herrmann A, Pavkovic M, Ellinger-Ziegelbauer H, Ernst R, Mally A, Keck M, Riefke B (2017) Quantitative targeted bile acid profiling as new markers for DILI in a model of methapyrilene-induced liver injury in rats. Toxicology 386:1–10. https://doi.org/10.1016/j.tox.2017.05.009. (PMID: 10.1016/j.tox.2017.05.00928529062)
Song P, Rockwell CE, Cui JY (2015) Individual bile acids have differential effects on bile acid signaling in mice. Toxicol Appl Pharmacol 283(1):57–64. https://doi.org/10.1016/j.taap.2014.12.005. (PMID: 10.1016/j.taap.2014.12.005255827067748369)
Suharoschi R, Pop OL, Vlaic RA, Muresan CI, Muresan CC, Cozma A, Sitar-Taut AV, Heghes SC, Fodor A, Iuga CA (2019) Chapter 3 - dietary fiber and metabolism. In Charis M. Galanakis (editor), Dietary Fiber: Properties, Recovery, and Applications. Academic Press, 59–77. https://doi.org/10.1016/B978-0-12-816495-2.00003-4.
Takagi S, Murata H, Goto T, Ichiki T, Endo M, Hatate H, Yoshida T, Sakai T, Yamashita H, Ukawa M (2006) Efficacy of taurine supplementation for preventing green liver syndrome and improving growth performance in yearling red sea bream Pagrus major fed low-fishmeal diet. Fish Sci 72:1191–1199. https://doi.org/10.1111/j.1444-2906.2006.01276.x. (PMID: 10.1111/j.1444-2906.2006.01276.x)
Takagi S, Murata H, Goto T, Ichiki T, Munasinghe DMS, Endo M, Matsumoto T, Sakurai A, Hatate H, Yoshida T, Sakai T, Yamashita H, Ukawa M, Kuramoto T (2005) The green liver syndrome is caused by taurine deficiency in yellowtail, Seriola quinqueradiata fed diets without fishmeal. Aquaculture Science 53:279–290. https://doi.org/10.11233/aquaculturesci1953.53.279. (PMID: 10.11233/aquaculturesci1953.53.279)
Takagi S, Murata H, Goto T, Hatate H, Endo M, Yamashita H, Miyatake H, Ukawa M (2010) Necessity of dietary taurine supplementation for preventing green liver symptom and improving growth performance in yearling red sea bream Pagrus major fed nonfishmeal diets based on soy protein concentrate. Fish Sci 76:119. https://doi.org/10.1007/s12562-009-0185-y. (PMID: 10.1007/s12562-009-0185-y)
Takahashi S, Fukami T, Masuo Y, Brocker CN, Xie C, Krausz KW, Wolf CR, Henderson CJ, Gonzalez FJ (2016) Cyp2c70 is responsible for the species difference in bile acid metabolism between mice and humans. J Lipid Res 57(12):2130–2137. https://doi.org/10.1194/jlr.M071183. (PMID: 10.1194/jlr.M071183276389595321228)
Thandapilly SJ, Ndou SP, Wang YN, Nyachoti CM, Ames NP (2018) Barley β-glucan increases fecal bile acid excretion and short chain fatty acid levels in mildly hypercholesterolemic individuals. Food Funct 9(6):3092–3096. https://doi.org/10.1039/C8FO00157J. (PMID: 10.1039/C8FO00157J29872803)
Tian W, Wang XY, Wu HX, Liu YL, Xu X, Wang WJ (2018) Effect of glycine on liver inflammation alleviating induced by lipopolysaccharide stress in weaned piglets. Nutrition and Feedstuffs 56(6): 130–134. https://doi.org/10.19556/j.0258-7033.20190919-05.
Wan YJY, Sheng LL (2018) Regulation of bile acid receptor activity. Liver Research 2(4):180–185. https://doi.org/10.1016/j.livres.2018.09.008. (PMID: 10.1016/j.livres.2018.09.008322805577147511)
Wang H, Chen J, Hollister K, Sowers LC, Forman BM (1999) Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell 3(5):543–543. https://doi.org/10.1016/s1097-2765(00)80348-2. (PMID: 10.1016/s1097-2765(00)80348-210360171)
Xu MQ, Cen MS, Shen YS (2020) Deoxycholate acid induced-gut dysbiosis disrupts bile acid enterohepatic circulation and promotes intestinal inflammation. Gastroenterology 158(6): S-204. https://doi.org/10.1016/S0016-5085(20)31196-3.
Xu X, Wang XY, Wu HT, Zhu HL, Liu CC, Hou YQ, Dai B, Liu XT (2018) Glycine relieves intestinal injury by maintaining mTOR signaling and suppressing AMPK, TLR4, and NOD signaling in weaned piglets after lipopolysaccharide challenge. International Jurnal of Molecular Sciences 19(7):1980. https://doi.org/10.3390/ijms19071980. (PMID: 10.3390/ijms19071980)
Yang H, Duan ZJ (2016) Bile acids and the potential role in primary biliary cirrhosis. Digestion 94(3):145–153. https://doi.org/10.1159/000452300. (PMID: 10.1159/00045230027832649)
Zhang J, Xiong F, Wang GT, Li WX, Li M, Zou H, Wu SG (2017) The influence of diet on the grass carp intestinal microbiota and bile acids. Aquac Res 48(9):4934–4944. https://doi.org/10.1111/are.13312. (PMID: 10.1111/are.13312)
Zhu RG, Li TP, Dong YP, Liu YP, Li SH, Chen G, Zhao ZS, Jia YF (2013) Pectin pentasaccharide from hawthorn (Crataegus pinnatifida Bunge. Var. major) ameliorates disorders of cholesterol metabolism in high-fat diet fed mice. Food research international 54(1): 262–268. https://doi.org/10.1016/j.foodres.2013.07.010.
Zhuang L, Ding W, Zhang Q, Ding W, Yu X, Xi D (2021) TGR5 attenuated liver ischemia-reperfusion injury by activating the Keap1-Nrf2 signaling pathway in mice. Inflammation 44:859–872. https://doi.org/10.1007/s10753-020-01382-y. (PMID: 10.1007/s10753-020-01382-y33169298)
معلومات مُعتمدة: Y2018-20 Fishery Science and Technology Projects of Jiangsu Province; 20KJA240001 Major Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions of China; SNG2020060 Science and Technology Plan Project of Suzhou
فهرسة مساهمة: Keywords: Bile acid profile; Dietary fiber; Pectin; Yellow catfish
المشرفين على المادة: 0 (Bile Acids and Salts)
1EQV5MLY3D (Taurine)
89NA02M4RX (Pectins)
تواريخ الأحداث: Date Created: 20211028 Date Completed: 20220223 Latest Revision: 20220223
رمز التحديث: 20240513
DOI: 10.1007/s10695-021-01028-2
PMID: 34709495
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-5168
DOI:10.1007/s10695-021-01028-2