دورية أكاديمية

Antidepressant-like effect of rosmarinic acid during LPS-induced neuroinflammatory model: The potential role of cannabinoid receptors/PPAR-γ signaling pathway.

التفاصيل البيبلوغرافية
العنوان: Antidepressant-like effect of rosmarinic acid during LPS-induced neuroinflammatory model: The potential role of cannabinoid receptors/PPAR-γ signaling pathway.
المؤلفون: Lataliza AAB; Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá, Brazil.; Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil., de Assis PM; Center for Research and Innovation in Health Sciences (NUPICS), Faculty of Pharmacy, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil., da Rocha Laurindo L; Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá, Brazil., Gonçalves ECD; Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá, Brazil.; Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil., Raposo NRB; Center for Research and Innovation in Health Sciences (NUPICS), Faculty of Pharmacy, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil., Dutra RC; Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá, Brazil.; Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil.; Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
المصدر: Phytotherapy research : PTR [Phytother Res] 2021 Dec; Vol. 35 (12), pp. 6974-6989. Date of Electronic Publication: 2021 Oct 28.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 8904486 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1099-1573 (Electronic) Linking ISSN: 0951418X NLM ISO Abbreviation: Phytother Res Subsets: MEDLINE
أسماء مطبوعة: Publication: : Chichester : Wiley
Original Publication: London : Heyden & Son, c1987-
مواضيع طبية MeSH: Antidepressive Agents*/pharmacology , PPAR gamma* , Receptors, Cannabinoid*, Cinnamates/*pharmacology , Depsides/*pharmacology , Neuroinflammatory Diseases/*drug therapy, Animals ; Lipopolysaccharides ; Signal Transduction ; Rosmarinic Acid
مستخلص: Rosmarinic acid (RA), an ester of caffeic acid and 3, 4-dihydroxyphenyllactic acid, has anti-inflammatory and neuroprotective activities. Herein, this study investigated in silico the drug-likeness and the potential molecular targets to RA. Moreover, it tested the antidepressant-like potential of RA in the lipopolysaccharide (LPS)-induced depression model. RA (MW = 360.31 g/mol) meets the criteria of both Lipinski's rule of five and the Ghose filter. It also attends to relevant pharmacokinetic parameters. Target prediction analysis identified RA's potential targets and biological activities, including the peroxisome proliferator-activated receptor (PPAR) and the cannabinoid receptors CB 1 and CB 2 . In vivo, RA's acute, repetitive, and therapeutic administration showed antidepressant-like effect since it significantly reduced the immobility time in the tail suspension test and increased grooming time in the splash test. Further, the pretreatment with antagonists of CB 1 , CB 2 , and PPAR-γ receptors significantly blocked the antidepressant-like effect of RA. Altogether, our findings suggest that cannabinoid receptors/PPAR-γ signaling pathways are involved with the antidepressant-like effect of RA. Moreover, this molecule meets important physicochemical and pharmacokinetic parameters that favor its bioavailability. RA constitutes a promising, innovative, and safe molecule for the pharmacotherapy of major depressive disorder.
(© 2021 John Wiley & Sons Ltd.)
References: Adamczyk, P., Gołda, A., Mccreary, A. C., Filip, M., & Przegaliński, E. (2008). Activation of endocannabinoid transmission induces antidepressant-like effects in rats. Journal of Physiology and Pharmacology, 59(2), 217-228.
Alaiyed, S., & Conant, K. (2019). A role for matrix metalloproteases in antidepressant efficacy. Frontiers in Molecular Neuroscience, 12, 1-10. https://doi.org/10.3389/fnmol.2019.00117.
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: American Psychiatric Publishing. https://doi.org/10.1176/appi.books.9780890425596.
Athira, K. V., Bandopadhyay, S., Samudrala, P. K., Naidu, V. G. M., Lahkar, M., & Chakravarty, S. (2020). An overview of the heterogeneity of major depressive disorder: Current knowledge and future prospective. Current Neuropharmacology, 18(3), 168-187. https://doi.org/10.2174/1570159x17666191001142934.
Bains, N., & Abdijadid, S. (2020). Major depressive disorder. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK559078/.
Benson, C., Singer, D., Carpinella, C. M., Shawi, M., & Alphs, L. (2021). The health-related quality of life, work productivity, healthcare resource utilization, and economic burden associated with levels of suicidal ideation among patients self-reporting moderately severe or severe major depressive disorder in a national survey. Neuropsychiatric Disease and Treatment, 17, 111-123. https://doi.org/10.2147/NDT.S229530.
Bento, A. F., Marcon, R., Dutra, R. C., Claudino, R. F., Cola, M., Leite, D. F. P., & Calixto, J. B. (2011). β-Caryophyllene inhibits dextran sulfate sodium-induced colitis in mice through CB2 receptor activation and PPARγ pathway. American Journal of Pathology, 178(3), 1153-1166. https://doi.org/10.1016/j.ajpath.2010.11.052.
Bhatt, R., Singh, D., Prakash, A., & Mishra, N. (2015). Development, characterization and nasal delivery of rosmarinic acid-loaded solid lipid nanoparticles for the effective management of Huntingtons disease. Drug Delivery, 22(7), 931-939. https://doi.org/10.3109/10717544.2014.880860.
Bojarska, J., Remko, M., Breza, M., Madura, I. D., Kaczmarek, K., Zabrocki, J., & Wolf, W. M. (2020). A supramolecular approach to structure-based design with a focus on synthons hierarchy in ornithine-derived ligands: Review, synthesis, experimental and in silico studies. Molecules, 25(5), 1135-1162. https://doi.org/10.3390/molecules25051135.
Bromet, E., Andrade, L. H., Hwang, I., Sampson, N. A., Alonso, J., de Girolamo, G., … Kessler, R. C. (2011). Cross-national epidemiology of DSM-IV major depressive episode. BMC Medicine, 9(90), 1-16 Retrieved from http://www.biomedcentral.com/1741-7015/9/9030e793%40sessionmgr4006.
Brunt, T. M., & Bossong, M. G. (2020). The neuropharmacology of cannabinoid receptor ligands in central signaling pathways. European Journal of Neuroscience, 1-13. https://doi.org/10.1111/ejn.14982.
Chen, D. J., Gao, M., Gao, F. F., Su, Q. X., & Wu, J. (2017). Brain cannabinoid receptor 2: Expression, function and modulation. Acta Pharmacologica Sinica, 38(3), 312-316. https://doi.org/10.1038/aps.2016.149.
Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., … Tang, Y. (2012). AdmetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. Journal of Chemical Information and Modeling, 52(11), 3099-3105. https://doi.org/10.1021/ci300367a.
Choudhary, N., & Singh, V. (2019). Insights about multi-targeting and synergistic neuromodulators in Ayurvedic herbs against epilepsy: Integrated computational studies on drug-target and protein-protein interaction networks. Scientific Reports, 9(1), 1-23. https://doi.org/10.1038/s41598-019-46715-6.
Choy, E. H. (2019). Clinical significance of Janus kinase inhibitor selectivity. Rheumatology (Oxford, England), 58(6), 953-962. https://doi.org/10.1093/rheumatology/key339.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). New York, NY: Lawrence Erlbaum Associates. https://doi.org/10.4324/9780203771587.
Colle, R., De Larminat, D., Rotenberg, S., Hozer, F., Hardy, P., Verstuyft, C., … Corruble, E. (2016). PPAR-γ agonists for the treatment of major depression: A review. Pharmacopsychiatry, 50(2), 49-55. https://doi.org/10.1055/s-0042-120120.
Cristino, L., Bisogno, T., & Di Marzo, V. (2020). Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nature Reviews Neurology, 16(1), 9-29. https://doi.org/10.1038/s41582-019-0284-z.
Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 1-13. https://doi.org/10.1038/srep42717.
de Assis, P. M., Fávero, A., Menegasso, J. F., Meinel, R. S., Marion, G. M., Nunes, V. S. P., … Raposo, N. R. B. (2020). In silico, in vitro and in vivo studies indicate resveratrol analogue as a potential alternative for neuroinflammatory disorders. Life Sciences, 249, 117538-117552. https://doi.org/10.1016/j.lfs.2020.117538.
do Nascimento, R. F., de Oliveira Formiga, R., Machado, F. D. F., de Sales, I. R. P., de Lima, G. M., Alves Júnior, E. B., … Batista, L. M. (2020). Rosmarinic acid prevents gastric ulcers via sulfhydryl groups reinforcement, antioxidant and immunomodulatory effects. Naunyn-Schmiedeberg's Archives of Pharmacology, 393(12), 2265-2278. https://doi.org/10.1007/s00210-020-01894-2.
Doenni, V. M., Gray, J. M., Song, C. M., Patel, S., Hill, M. N., & Pittman, Q. J. (2016). Deficient adolescent social behavior following early-life inflammation is ameliorated by augmentation of anandamide signaling. Brain, Behavior, and Immunity, 58, 237-247. https://doi.org/10.1016/j.bbi.2016.07.152.
du Sert, N. P., Hurst, V., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., … Würbel, H. (2020). The arrive guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biology, 18(7), 1-12. https://doi.org/10.1371/journal.pbio.3000410.
Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. Journal of Chemical Information and Modeling, 61(8), 3891-3898. https://doi.org/10.1021/acs.jcim.1c00203.
Fachel, F. N. S., Schuh, R. S., Veras, K. S., Bassani, V. L., Koester, L. S., Henriques, A. T., … Teixeira, H. F. (2019). An overview of the neuroprotective potential of rosmarinic acid and its association with nanotechnology-based delivery systems: A novel approach to treating neurodegenerative disorders. Neurochemistry International, 122, 47-58. https://doi.org/10.1016/j.neuint.2018.11.003.
Fritz, A. K., Amrein, I., & Wolfer, D. P. (2017). Similar reliability and equivalent performance of female and male mice in the open field and water-maze place navigation task. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 175(3), 380-391. https://doi.org/10.1002/ajmg.c.31565.
Galts, C. P. C., Bettio, L. E. B., Jewett, D. C., Yang, C. C., Brocardo, P. S., Rodrigues, A. L. S., … Gil-Mohapel, J. (2019). Depression in neurodegenerative diseases: Common mechanisms and current treatment options. Neuroscience and Biobehavioral Reviews, 102, 56-84. https://doi.org/10.1016/j.neubiorev.2019.04.002.
Gartlehner, G., Wagner, G., Matyas, N., Titscher, V., Greimel, J., Lux, L., … Lohr, K. N. (2017). Pharmacological and non-pharmacological treatments for major depressive disorder: Review of systematic reviews. BMJ Open, 7(6), 1-14. https://doi.org/10.1136/bmjopen-2016-014912.
Gfeller, D., Grosdidier, A., Wirth, M., Daina, A., Michielin, O., & Zoete, V. (2014). SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Research, 42(W1), 32-38. https://doi.org/10.1093/nar/gku293.
Ghasemzadeh Rahbardar, M., & Hosseinzadeh, H. (2020). Effects of rosmarinic acid on nervous system disorders: An updated review. Naunyn-Schmiedeberg's Archives of Pharmacology, 393(10), 1779-1795. https://doi.org/10.1007/s00210-020-01935-w.
Ghazizadeh, J., Hamedeyazdan, S., Torbati, M., Farajdokht, F., Fakhari, A., Mahmoudi, J., … Sadigh-Eteghad, S. (2020). Melissa officinalis L. hydro-alcoholic extract inhibits anxiety and depression through prevention of central oxidative stress and apoptosis. Experimental Physiology, 105(4), 707-720. https://doi.org/10.1113/EP088254.
Ghose, A. K., Viswanadhan, V. N., & Wendoloski, J. J. (1999). A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. Journal of Combinatorial Chemistry, 1(1), 55-68. https://doi.org/10.1021/cc9800071.
Gonçalves, E. C. D., Assis, P. M., Junqueira, L. A., Cola, M., Santos, A. R. S., Raposo, N. R. B., & Dutra, R. C. (2020). Citral inhibits the inflammatory response and Hyperalgesia in mice: The role of TLR4, TLR2/Dectin-1, and CB2 cannabinoid receptor/ATP-sensitive K+ channel pathways. ACS Applied Materials and Interfaces, 83(4), 1190-1200. https://doi.org/10.1021/acs.jnatprod.9b01134.
Haj-Mirzaian, A., Amini-Khoei, H., Amiri, S., Ghesmati, M., Zahir, M., Shafaroodi, H., & Dehpour, A. R. (2017). Activation of cannabinoid receptors elicits antidepressant-like effects in a mouse model of social isolation stress. Brain Research Bulletin, 130, 200-210. https://doi.org/10.1016/j.brainresbull.2017.01.018.
Han, Y., Ma, L., Zhao, L., Feng, W., & Zheng, X. (2019). Rosmarinic inhibits cell proliferation, invasion and migration via upregulating miR-506 and suppressing MMP2/16 expression in pancreatic cancer. Biomedicine and Pharmacotherapy, 115, 108878. https://doi.org/10.1016/j.biopha.2019.108878.
Hase, T., Shishido, S., Yamamoto, S., Yamashita, R., Nukima, H., Taira, S., … Kobayashi, S. (2019). Rosmarinic acid suppresses Alzheimer's disease development by reducing amyloid β aggregation by increasing monoamine secretion. Scientific Reports, 9(1), 1-13. https://doi.org/10.1038/s41598-019-45168-1.
Hill, M., Miller, G., Ho, W.-S., Gorzalka, B., & Hillard, C. (2008). Serum Endocannabinoid content is altered in females with depressive disorders: A preliminary report. Pharmacopsychiatry, 41(2), 48-53. https://doi.org/10.1055/s-2007-993211.
Hillard, C., & Liu, Q. (2014). Endocannabinoid signaling in the etiology and treatment of major depressive illness. Current Pharmaceutical Design, 20(23), 3795-3811. https://doi.org/10.2174/13816128113196660735.
Huang, N., Wang, Y., Zhan, G., Yu, F., Li, S., Hua, D., … Yang, C. (2019). Contribution of skeletal muscular glycine to rapid antidepressant effects of ketamine in an inflammation-induced mouse model of depression. Psychopharmacology, 236(12), 3513-3523. https://doi.org/10.1007/s00213-019-05319-8.
Ibarra-Lecue, I., Pilar-Cuéllar, F., Muguruza, C., Florensa-Zanuy, E., Díaz, Á., Urigüen, L., … Callado, L. F. (2018). The endocannabinoid system in mental disorders: Evidence from human brain studies. Biochemical Pharmacology, 157, 97-107. https://doi.org/10.1016/j.bcp.2018.07.009.
Jang, A. H., Kim, T. H., Kim, G. D., Kim, J. E., Kim, H. J., Kim, S. S., … Park, C. S. (2011). Rosmarinic acid attenuates 2,4-dinitrofluorobenzene-induced atopic dermatitis in NC/Nga mice. International Immunopharmacology, 11(9), 1271-1277. https://doi.org/10.1016/j.intimp.2011.04.007.
Jiang, K., Ma, X., Guo, S., Zhang, T., Zhao, G., Wu, H., … Deng, G. (2018). Anti-inflammatory effects of Rosmarinic acid in lipopolysaccharide-induced mastitis in mice. Inflammation, 41(2), 437-448. https://doi.org/10.1007/s10753-017-0700-8.
Jiang, W. L., Chen, X. G., Qu, G. W., Yue, X. D., Zhu, H. B., Tian, J. W., & Fu, F. H. (2009). Rosmarinic acid protects against experimental sepsis by inhibiting pro-inflammatory factor release and ameliorating hemodynamics. Shock, 32(6), 608-613. https://doi.org/10.1097/SHK.0b013e3181a48e86.
Jin, X., Liu, P., Yang, F., Zhang, Y. H., & Miao, D. (2013). Rosmarinic acid ameliorates depressive-like behaviors in a rat model of CUS and upregulates BDNF levels in the hippocampus and hippocampal-derived astrocytes. Neurochemical Research, 38(9), 1828-1837. https://doi.org/10.1007/s11064-013-1088-y.
Kluger, B., Triolo, P., Jones, W., & Jankovic, J. (2015). The therapeutic potential of cannabinoids for movement disorders. Movement Disorders, 30(3), 313-327. https://doi.org/10.1002/mds.26142.
Kola, A., Hecel, A., Lamponi, S., & Valensin, D. (2020). Novel perspective on Alzheimer's disease treatment: Rosmarinic acid molecular interplay with copper(ii) and amyloid β. Life, 10(7), 1-17. https://doi.org/10.3390/life10070118.
Kondo, S., El Omri, A., Han, J., & Isoda, H. (2015). Antidepressant-like effects of rosmarinic acid through mitogen-activated protein kinase phosphatase-1 and brain-derived neurotrophic factor modulation. Journal of Functional Foods, 14, 758-766. https://doi.org/10.1016/j.jff.2015.03.001.
Lagunin, A., Stepanchikova, A., Filimonov, D., & Poroikov, V. (2000). PASS: Prediction of activity spectra for biologically active substances. Bioinformatics, 16(8), 747-748. https://doi.org/10.1093/bioinformatics/16.8.747.
Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 1-12. https://doi.org/10.3389/fpsyg.2013.00863.
Levy, M. J. F., Boulle, F., Steinbusch, H. W., van den Hove, D. L. A., Kenis, G., & Lanfumey, L. (2018). Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology, 235(8), 2195-2220. https://doi.org/10.1007/s00213-018-4950-4.
Lieberknecht, V., Cunha, M. P., Junqueira, S. C., Coelho, D. S., de Souza, L. F., dos Santos, A. R. S., … Dafre, A. L. (2017). Antidepressant-like effect of pramipexole in an inflammatory model of depression. Behavioural Brain Research, 320, 365-373. https://doi.org/10.1016/j.bbr.2016.11.007.
Lin, S. H., Chou, M. L., Chen, W. C., Lai, Y. S., Lu, K. H., Hao, C. W., & Sheen, L. Y. (2015). A medicinal herb, Melissa officinalis L. ameliorates depressive-like behavior of rats in the forced swimming test via regulating the serotonergic neurotransmitter. Journal of Ethnopharmacology, 175, 266-272. https://doi.org/10.1016/j.jep.2015.09.018.
Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64, 4-17. https://doi.org/10.1016/j.addr.2012.09.019.
Liu, Q. R., Canseco-Alba, A., Zhang, H. Y., Tagliaferro, P., Chung, M., Dennis, E., … Onaivi, E. S. (2017). Cannabinoid type 2 receptors in dopamine neurons inhibits psychomotor behaviors, alters anxiety, depression and alcohol preference. Scientific Reports, 7(1), 1-17. https://doi.org/10.1038/s41598-017-17796-y.
Luft, J. G., Steffens, L., Morás, A. M., da Rosa, M. S., Leipnitz, G., Regner, G. G., … Pereira, P. (2019). Rosmarinic acid improves oxidative stress parameters and mitochondrial respiratory chain activity following 4-aminopyridine and picrotoxin-induced seizure in mice. Naunyn-Schmiedeberg's Archives of Pharmacology, 392(11), 1347-1358. https://doi.org/10.1007/s00210-019-01675-6.
Machado, D. G., Neis, V. B., Balen, G. O., Colla, A., Cunha, M. P., Dalmarco, J. B., … Rodrigues, A. L. S. (2012). Antidepressant-like effect of ursolic acid isolated from Rosmarinus officinalis L. in mice: Evidence for the involvement of the dopaminergic system. Pharmacology Biochemistry and Behavior, 103(2), 204-211. https://doi.org/10.1016/j.pbb.2012.08.016.
Messeha, S. S., Zarmouh, N. O., Asiri, A., & Soliman, K. F. A. (2020). Rosmarinic acid-induced apoptosis and cell cycle arrest in triple-negative breast cancer cells. European Journal of Pharmacology, 885, 173419. https://doi.org/10.1016/j.ejphar.2020.173419.
Micale, V., Tabiova, K., Kucerova, J., & Drago, F. (2015). Role of the endocannabinoid system in depression: From preclinical to clinical evidence. In Cannabinoid modulation of emotion, memory, and motivation (pp. 97-129). New York, NY: Springer. https://doi.org/10.1007/978-1-4939-2294-9_5.
Moretti, M., Neis, V. B., Matheus, F. C., Cunha, M. P., Rosa, P. B., Ribeiro, C. M., … Prediger, R. D. (2015). Effects of Agmatine on depressive-like behavior induced by Intracerebroventricular administration of 1-Methyl-4-phenylpyridinium (MPP+). Neurotoxicity Research, 28(3), 222-231. https://doi.org/10.1007/s12640-015-9540-1.
Müller, J., Martins, A., Csábi, J., Fenyvesi, F., Könczöl, Á., Hunyadi, A., & Balogh, G. T. (2017). BBB penetration-targeting physicochemical lead selection: Ecdysteroids as chemo-sensitizers against CNS tumors. European Journal of Pharmaceutical Sciences, 96, 571-577. https://doi.org/10.1016/j.ejps.2016.10.034.
Nadeem, M., Imran, M., Gondal, T. A., Imran, A., Shahbaz, M., Amir, R. M., … Martins, N. (2019). Therapeutic potential of rosmarinic acid: A comprehensive review. Applied Sciences, 9(15), 3139-3162. https://doi.org/10.3390/app9153139.
Nair, A., & Jacob, S. (2016). A simple practice guide for dose conversion between animals and human. Journal of Basic and Clinical Pharmacy, 7(2), 27. https://doi.org/10.4103/0976-0105.177703.
Navarrete, F., García-Gutiérrez, M. S., Jurado-Barba, R., Rubio, G., Gasparyan, A., Austrich-Olivares, A., & Manzanares, J. (2020). Endocannabinoid system components as potential biomarkers in psychiatry. Frontiers in Psychiatry, 11, 1-30. https://doi.org/10.3389/fpsyt.2020.00315.
Nisha, C. M., Kumar, A., Nair, P., Gupta, N., Silakari, C., Tripathi, T., & Kumar, A. (2016). Molecular docking and in silico ADMET study reveals acylguanidine 7a as a potential inhibitor of β -secretase. Advances in Bioinformatics, 2016, 1-6. https://doi.org/10.1155/2016/9258578.
Noguchi-Shinohara, M., Ono, K., Hamaguchi, T., Iwasa, K., Nagai, T., Kobayashi, S., … Yamada, M. (2015). Pharmacokinetics, safety and tolerability of Melissa officinalis extract which contained Rosmarinic acid in healthy individuals: A randomized controlled trial. PLoS One, 10(5), e0126422. https://doi.org/10.1371/journal.pone.0126422.
O'Sullivan, S. E. (2016). An update on PPAR activation by cannabinoids. British Journal of Pharmacology, 173(12), 1899-1910. https://doi.org/10.1111/bph.13497.
Parolaro, D., Realini, N., Vigano, D., Guidali, C., & Rubino, T. (2010). The endocannabinoid system and psychiatric disorders. Experimental Neurology, 224(1), 3-14. https://doi.org/10.1016/j.expneurol.2010.03.018.
Pazini, F. L., Cunha, M. P., & Rodrigues, A. L. S. (2019). The possible beneficial effects of creatine for the management of depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 89, 193-206. https://doi.org/10.1016/j.pnpbp.2018.08.029.
Petersen, M., Abdullah, Y., Benner, J., Eberle, D., Gehlen, K., Hücherig, S., … Wolters, S. (2009). Evolution of rosmarinic acid biosynthesis. Phytochemistry, 70(15-16), 1663-1679. https://doi.org/10.1016/j.phytochem.2009.05.010.
Poleszak, E., Wośko, S., Sławińska, K., Szopa, A., Wróbel, A., & Serefko, A. (2018). Cannabinoids in depressive disorders. Life Sciences, 213(July), 18-24. https://doi.org/10.1016/j.lfs.2018.09.058.
Poleszak, E., Wośko, S., Sławińska, K., Wyska, E., Szopa, A., Doboszewska, U., … Serefko, A. (2019). Influence of the CB1 cannabinoid receptors on the activity of the monoaminergic system in the behavioural tests in mice. Brain Research Bulletin, 150, 179-185. https://doi.org/10.1016/j.brainresbull.2019.05.021.
Poleszak, E., Wośko, S., Sławińska, K., Wyska, E., Szopa, A., Sobczyński, J., … Serefko, A. (2020). Ligands of the CB2 cannabinoid receptors augment activity of the conventional antidepressant drugs in the behavioural tests in mice. Behavioural Brain Research, 378, 112297-112306. https://doi.org/10.1016/j.bbr.2019.112297.
Poroikov, V. V., Filimonov, D. A., Gloriozova, T. A., Lagunin, A. A., Druzhilovskiy, D. S., Rudik, A. V., … Pogodin, P. V. (2019). Computer-aided prediction of biological activity spectra for organic compounds: The possibilities and limitations. Russian Chemical Bulletin, 68(12), 2143-2154. https://doi.org/10.1007/s11172-019-2683-0.
Prashantha Kumar, B. R., Kumar, A. P., Jose, J. A., Prabitha, P., Yuvaraj, S., Chipurupalli, S., … Justin, A. (2020). Minutes of PPAR-γ agonism and neuroprotection. Neurochemistry International, 140, 104814-104823. https://doi.org/10.1016/j.neuint.2020.104814.
Qin, X., Wang, W., Wu, H., Liu, D., Wang, R., Xu, J., … Pan, F. (2020). PPARγ-mediated microglial activation phenotype is involved in depressive-like behaviors and neuroinflammation in stressed C57BL/6J and Ob/Ob mice. Psychoneuroendocrinology, 117, 104674-104685. https://doi.org/10.1016/j.psyneuen.2020.104674.
Reagan-Shaw, S., Nihal, M., & Ahmad, N. (2007). Dose translation from animal to human studies revisited. The FASEB Journal, 22(3), 659-661. https://doi.org/10.1096/fj.07-9574lsf.
Remus, J. L., & Dantzer, R. (2016). Inflammation models of depression in rodents: Relevance to psychotropic drug discovery. International Journal of Neuropsychopharmacology, 19(9), 1-13. https://doi.org/10.1093/ijnp/pyw028.
Ruberto, V. L., Jha, M. K., & Murrough, J. W. (2020). Pharmacological treatments for patients with TRD.
Sánchez-Campillo, M., Gabaldon, J. A., Castillo, J., Benavente-García, O., Del Baño, M. J., Alcaraz, M., … Lozano, J. A. (2009). Rosmarinic acid, a photo-protective agent against UV and other ionizing radiations. Food and Chemical Toxicology, 47(2), 386-392. https://doi.org/10.1016/j.fct.2008.11.026.
Scarpati, M., & Oriente, G. (1958). Isolamento e costituzione dell'acido rosmarinico (dal rosmarinus off.). Ricerca Scientia, 28, 2329-2333.
Scherma, M., Masia, P., Deidda, M., Fratta, W., Tanda, G., & Fadda, P. (2018). New perspectives on the use of cannabis in the treatment of psychiatric disorders. Medicine, 5(4), 107. https://doi.org/10.3390/medicines5040107.
Sepanjnia, K., Modabbernia, A., Ashrafi, M., Modabbernia, M. J., & Akhondzadeh, S. (2012). Pioglitazone adjunctive therapy for moderate-to-severe major depressive disorder: Randomized double-blind placebo-controlled trial. Neuropsychopharmacology, 37(9), 2093-2100. https://doi.org/10.1038/npp.2012.58.
Shan, Y., Wang, D. D., Xu, Y. X., Wang, C., Cao, L., Liu, Y. S., & Zhu, C. Q. (2015). Aging as a precipitating factor in chronic restraint stress-induced tau aggregation pathology, and the protective effects of rosmarinic acid. Journal of Alzheimer's Disease, 49(3), 829-844. https://doi.org/10.3233/JAD-150486.
Shariq, A. S., Brietzke, E., Rosenblat, J. D., Pan, Z., Rong, C., Ragguett, R. M., … McIntyre, R. S. (2019). Therapeutic potential of JAK/STAT pathway modulation in mood disorders. Reviews in the Neurosciences, 30(1), 1-7. https://doi.org/10.1515/revneuro-2018-0027.
Smaga, I., Zaniewska, M., Gawliński, D., Faron-Górecka, A., Szafrański, P., Cegła, M., & Filip, M. (2017). Changes in the cannabinoids receptors in rats following treatment with antidepressants. Neurotoxicology, 63, 13-20. https://doi.org/10.1016/j.neuro.2017.08.012.
Soria, V., González-Rodríguez, A., Huerta-Ramos, E., Usall, J., Cobo, J., Bioque, M., … Labad, J. (2018). Targeting hypothalamic-pituitary-adrenal axis hormones and sex steroids for improving cognition in major mood disorders and schizophrenia: A systematic review and narrative synthesis. Psychoneuroendocrinology, 93, 8-19. https://doi.org/10.1016/j.psyneuen.2018.04.012.
Sotnikova, R., Okruhlicova, L., Vlkovicova, J., Navarova, J., Gajdacova, B., Pivackova, L., … Krenek, P. (2013). Rosmarinic acid administration attenuates diabetes-induced vascular dysfunction of the rat aorta. Journal of Pharmacy and Pharmacology, 65(5), 713-723. https://doi.org/10.1111/jphp.12037.
Tacey, A., Millar, S., Qaradakhi, T., Smith, C., Hayes, A., Anderson, S., … Levinger, I. (2021). Undercarboxylated osteocalcin has no adverse effect on endothelial function in rabbit aorta or human vascular cells. Journal of Cellular Physiology, 236(4), 2840-2849. https://doi.org/10.1002/jcp.30048.
Takeda, H., Tsuji, M., Inazu, M., Egashira, T., & Matsumiya, T. (2002). Rosmarinic acid and caffeic acid produce antidepressive-like effect in the forced swimming test in mice. European Journal of Pharmacology, 449(3), 261-267. https://doi.org/10.1016/S0014-2999(02)02037-X.
Taniguti, E. H., Ferreira, Y. S., Stupp, I. J. V., Fraga-Junior, E. B., Doneda, D. L., Lopes, L., … Vandresen-Filho, S. (2019). Atorvastatin prevents lipopolysaccharide-induced depressive-like behaviour in mice. Brain Research Bulletin, 146, 279-286. https://doi.org/10.1016/j.brainresbull.2019.01.018.
Troubat, R., Barone, P., Leman, S., Desmidt, T., Cressant, A., Atanasova, B., … Camus, V. (2021). Neuroinflammation and depression: A review. European Journal of Neuroscience, 53(1), 151-171. https://doi.org/10.1111/ejn.14720.
Tufano, M., & Pinna, G. (2020). Is there a future for PPARs in the treatment of neuropsychiatric disorders? Molecules, 25(5), 1062. https://doi.org/10.3390/molecules25051062.
United Nations. (2017). Globally harmonized system of classification and labelling of chemicals (GHS) (7th ed.). New York, NY: United Nations Publications.
Vieira, G., Cavalli, J., Gonçalves, E. C. D., Braga, S. F. P., Ferreira, R. S., Santos, A. R. S., … Dutra, R. C. (2020). Antidepressant-like effect of terpineol in an inflammatory model of depression: Involvement of the cannabinoid system and D2 dopamine receptor. Biomolecules, 10(5), 1-23. https://doi.org/10.3390/biom10050792.
Wang, H.-n., Wang, L., Zhang, R.-g., Chen, Y.-c., Liu, L., Gao, F., … Tan, Q. (2014). Anti-depressive mechanism of repetitive transcranial magnetic stimulation in rat: The role of the endocannabinoid system. Journal of Psychiatric Research, 51(1), 79-87. https://doi.org/10.1016/j.jpsychires.2014.01.004.
Wang, L., Yang, H., Wang, C., Shi, X., & Li, K. (2019). Rosmarinic acid inhibits proliferation and invasion of hepatocellular carcinoma cells SMMC 7721 via PI3K/AKT/mTOR signal pathway. Biomedicine and Pharmacotherapy, 120(1), 109443. https://doi.org/10.1016/j.biopha.2019.109443.
World Health Organization. (2020). Depression. Retrieved from https://www.who.int/news-room/fact-sheets/detail/depression.
Yang, H., Lou, C., Sun, L., Li, J., Cai, Y., Wang, Z., … Tang, Y. (2019). AdmetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics, 35(6), 1067-1069. https://doi.org/10.1093/bioinformatics/bty707.
Yang, M. D., Chiang, Y., Higashiyama, R., Asahina, K., Mann, D. A., Mann, J., … Tsukamoto, H. (2012). Rosmarinic acid and baicalin epigenetically de-repress Pparγ in hepatic stellate cells for their anti-fibrotic effect. Hepatology, 55(4), 1271-1281. https://doi.org/10.1002/hep.24792.Rosmarinic.
Yao, W., Zhang, J. C., Ishima, T., Ren, Q., Yang, C., Dong, C., … Hashimoto, K. (2016). Antidepressant effects of TBE-31 and MCE-1, the novel Nrf2 activators, in an inflammation model of depression. European Journal of Pharmacology, 793, 21-27. https://doi.org/10.1016/j.ejphar.2016.10.037.
Yeung, K. S., Hernandez, M., Mao, J. J., Haviland, I., & Gubili, J. (2018). Herbal medicine for depression and anxiety: A systematic review with assessment of potential psycho-oncologic relevance. Phytotherapy Research, 32(5), 865-891. https://doi.org/10.1002/ptr.6033.
Zhang, X., Ma, Z. G., Yuan, Y. P., Xu, S. C., Wei, W. Y., Song, P., … Tang, Q. Z. (2018). Rosmarinic acid attenuates cardiac fibrosis following long-term pressure overload via AMPKα/Smad3 signaling article. Cell Death & Disease, 9(2), 102. https://doi.org/10.1038/s41419-017-0123-3.
Zhang, Y., Huang, R., Cheng, M., Wang, L., Chao, J., Li, J., … Yao, H. (2019). Gut microbiota from NLRP3-deficient mice ameliorates depressive-like behaviors by regulating astrocyte dysfunction via circHIPK2. Microbiome, 7, 116. https://doi.org/10.1186/s40168-019-0733-3.
Zhao, Q., Wu, X., Yan, S., Xie, X., Fan, Y., Zhang, J., … You, Z. (2016). The antidepressant-like effects of pioglitazone in a chronic mild stress mouse model are associated with PPARγ-mediated alteration of microglial activation phenotypes. Journal of Neuroinflammation, 13(1), 1-17. https://doi.org/10.1186/s12974-016-0728-y.
Zhao, X., Cao, F., Liu, Q., Li, X., Xu, G., Liu, G., … Ma, J. (2019). Behavioral, inflammatory and neurochemical disturbances in LPS and UCMS-induced mouse models of depression. Behavioural Brain Research, 364, 494-502. https://doi.org/10.1016/j.bbr.2017.05.064.
Zong, J., Liao, X., Ren, B., & Wang, Z. (2018). The antidepressant effects of rosiglitazone on rats with depression induced by neuropathic pain. Life Sciences, 203, 315-322. https://doi.org/10.1016/j.lfs.2018.04.057.
معلومات مُعتمدة: Conselho Nacional de Desenvolvimento Científico e Tecnológico; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina; 465430/2014-7 Programa de Pós-Graduação em Neurociências (PPG NEURO), Programa INCT-INOVAMED
فهرسة مساهمة: Keywords: antidepressant-like behavior; bioinformatics; cannabimimetic compound; neuroinflammation; polyphenol; rosmarinic acid
المشرفين على المادة: 0 (Antidepressive Agents)
0 (Cinnamates)
0 (Depsides)
0 (Lipopolysaccharides)
0 (PPAR gamma)
0 (Receptors, Cannabinoid)
تواريخ الأحداث: Date Created: 20211028 Date Completed: 20211224 Latest Revision: 20231213
رمز التحديث: 20231215
DOI: 10.1002/ptr.7318
PMID: 34709695
قاعدة البيانات: MEDLINE
الوصف
تدمد:1099-1573
DOI:10.1002/ptr.7318