دورية أكاديمية

Decarbonylative Fluoroalkylation at Palladium(II): From Fundamental Organometallic Studies to Catalysis.

التفاصيل البيبلوغرافية
العنوان: Decarbonylative Fluoroalkylation at Palladium(II): From Fundamental Organometallic Studies to Catalysis.
المؤلفون: Lalloo N; Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States., Malapit CA; Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States., Taimoory SM; Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States., Brigham CE; Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States., Sanford MS; Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States.
المصدر: Journal of the American Chemical Society [J Am Chem Soc] 2021 Nov 10; Vol. 143 (44), pp. 18617-18625. Date of Electronic Publication: 2021 Oct 28.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: American Chemical Society Country of Publication: United States NLM ID: 7503056 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1520-5126 (Electronic) Linking ISSN: 00027863 NLM ISO Abbreviation: J Am Chem Soc Subsets: MEDLINE
أسماء مطبوعة: Publication: Washington, DC : American Chemical Society
Original Publication: Easton, Pa. [etc.]
مواضيع طبية MeSH: Organometallic Compounds/*chemistry , Palladium/*chemistry, Alkylation ; Catalysis ; Models, Molecular ; Molecular Structure
مستخلص: This Article describes the development of a decarbonylative Pd-catalyzed aryl-fluoroalkyl bond-forming reaction that couples fluoroalkylcarboxylic acid-derived electrophiles [R F C(O)X] with aryl organometallics (Ar-M'). This reaction was optimized by interrogating the individual steps of the catalytic cycle (oxidative addition, carbonyl de-insertion, transmetalation, and reductive elimination) to identify a compatible pair of coupling partners and an appropriate Pd catalyst. These stoichiometric organometallic studies revealed several critical elements for reaction design. First, uncatalyzed background reactions between R F C(O)X and Ar-M' can be avoided by using M' = boronate ester. Second, carbonyl de-insertion and Ar-R F reductive elimination are the two slowest steps of the catalytic cycle when R F = CF 3 . Both steps are dramatically accelerated upon changing to R F = CHF 2 . Computational studies reveal that a favorable F 2 C-H---X interaction contributes to accelerating carbonyl de-insertion in this system. Finally, transmetalation is slow with X = difluoroacetate but fast with X = F. Ultimately, these studies enabled the development of an (SPhos)Pd-catalyzed decarbonylative difluoromethylation of aryl neopentylglycol boronate esters with difluoroacetyl fluoride.
References: J Am Chem Soc. 2018 Sep 5;140(35):11112-11124. (PMID: 30080973)
Science. 2016 Apr 15;352(6283):329-32. (PMID: 27081068)
Org Lett. 2021 Jun 4;23(11):4191-4196. (PMID: 33979175)
Molecules. 2019 Apr 28;24(9):. (PMID: 31035405)
J Am Chem Soc. 2020 Apr 1;142(13):5918-5923. (PMID: 32207616)
Org Lett. 2019 Sep 6;21(17):6779-6784. (PMID: 31389711)
Angew Chem Int Ed Engl. 2018 Dec 17;57(51):16871-16876. (PMID: 30353979)
J Chem Theory Comput. 2008 Jul;4(7):1029-31. (PMID: 26636355)
Chem Soc Rev. 2014 Jan 7;43(1):412-43. (PMID: 24091429)
Org Lett. 2015 May 15;17(10):2506-9. (PMID: 25910053)
Angew Chem Int Ed Engl. 2018 Oct 1;57(40):13211-13215. (PMID: 30138542)
Nature. 2011 May 26;473(7348):470-7. (PMID: 21614074)
Chemistry. 2019 May 7;25(26):6513-6516. (PMID: 30941769)
Chemistry. 2020 Oct 9;26(57):12972-12977. (PMID: 32452619)
ACS Catal. 2020 Aug 7;10(15):8315-8320. (PMID: 34306801)
Org Lett. 2018 Jun 15;20(12):3487-3490. (PMID: 29856641)
Synlett. 2016 Dec;27(20):2747-2755. (PMID: 28260839)
J Org Chem. 2015 Aug 21;80(16):8449-57. (PMID: 26225803)
ChemSusChem. 2019 Jul 5;12(13):2983-2987. (PMID: 30908875)
J Med Chem. 2008 Aug 14;51(15):4359-69. (PMID: 18570365)
Angew Chem Int Ed Engl. 2006 Jun 19;45(25):4198-203. (PMID: 16688784)
Angew Chem Int Ed Engl. 2007;46(9):1373-5. (PMID: 17387652)
J Am Chem Soc. 2012 Mar 28;134(12):5524-7. (PMID: 22397683)
J Chem Theory Comput. 2011 Mar 8;7(3):625-632. (PMID: 21516178)
Future Med Chem. 2020 Mar;12(5):361-365. (PMID: 32027173)
Chem Rev. 2014 Feb 26;114(4):2432-506. (PMID: 24299176)
Org Biomol Chem. 2019 Feb 13;17(7):1655-1667. (PMID: 30474675)
J Am Chem Soc. 2016 Oct 26;138(42):13826-13829. (PMID: 27736064)
Chem Commun (Camb). 2018 Dec 11;54(99):13969-13972. (PMID: 30480276)
Chem Rev. 2015 Jan 28;115(2):683-730. (PMID: 24754488)
J Med Chem. 2017 Jan 26;60(2):797-804. (PMID: 28051859)
J Am Chem Soc. 2011 Feb 23;133(7):2116-9. (PMID: 21280669)
Org Biomol Chem. 2013 Aug 21;11(31):5057-64. (PMID: 23824256)
Org Lett. 2015 Oct 16;17(20):4996-9. (PMID: 26430875)
Chem Asian J. 2020 Apr 17;15(8):1234-1247. (PMID: 32125073)
Chem Soc Rev. 2017 Oct 2;46(19):5864-5888. (PMID: 28685781)
J Am Chem Soc. 2011 Sep 14;133(36):14338-48. (PMID: 21851113)
ACS Omega. 2018 Oct 12;3(10):13129-13140. (PMID: 31458033)
Nature. 2018 Nov;563(7729):100-104. (PMID: 30356210)
Inorg Chem. 2016 May 2;55(9):4124-31. (PMID: 27077600)
Angew Chem Int Ed Engl. 2015 Feb 16;54(8):2361-5. (PMID: 25581845)
J Am Chem Soc. 2016 Mar 2;138(8):2536-9. (PMID: 26883690)
Org Lett. 2018 Jul 20;20(14):4204-4208. (PMID: 29963866)
Angew Chem Int Ed Engl. 2008;47(17):3100-20. (PMID: 18357604)
Beilstein J Org Chem. 2013 Nov 08;9:2404-9. (PMID: 24367406)
Acc Chem Res. 2008 Feb;41(2):157-67. (PMID: 18186612)
Chemistry. 2017 Dec 22;23(72):18125-18128. (PMID: 28945302)
J Am Chem Soc. 2017 Jul 12;139(27):9325-9332. (PMID: 28576078)
Science. 2010 Jun 25;328(5986):1679-81. (PMID: 20576888)
Chem Commun (Camb). 2019 Aug 29;55(71):10507-10510. (PMID: 31407738)
Angew Chem Int Ed Engl. 2012 Nov 26;51(48):12090-4. (PMID: 23109355)
Angew Chem Int Ed Engl. 2013 Oct 25;52(44):11628-31. (PMID: 24038907)
Chem Soc Rev. 2011 Oct;40(10):5030-48. (PMID: 21792454)
Org Biomol Chem. 2020 Feb 19;18(7):1417-1425. (PMID: 32016267)
Angew Chem Int Ed Engl. 2013 Aug 5;52(32):8214-64. (PMID: 23873766)
Nat Commun. 2015 Aug 10;6:7919. (PMID: 26258541)
Chem Commun (Camb). 2020 Jul 21;56(57):7977-7980. (PMID: 32538388)
Chemistry. 2015 Jan 2;21(1):96-100. (PMID: 25393887)
Chemistry. 2015 Apr 13;21(16):6074-8. (PMID: 25752832)
Angew Chem Int Ed Engl. 2016 Jul 25;55(31):9080-3. (PMID: 27312868)
J Am Chem Soc. 2019 Oct 30;141(43):17322-17330. (PMID: 31617708)
Nat Chem. 2017 Sep;9(9):918-923. (PMID: 28837166)
Org Lett. 2016 Aug 5;18(15):3686-9. (PMID: 27442584)
Chem Soc Rev. 2008 Feb;37(2):320-30. (PMID: 18197348)
Angew Chem Int Ed Engl. 2020 Jan 7;59(2):574-594. (PMID: 30969455)
Angew Chem Int Ed Engl. 2011 Apr 11;50(16):3793-8. (PMID: 21442711)
Science. 2007 Sep 28;317(5846):1881-6. (PMID: 17901324)
Acc Chem Res. 2010 Dec 21;43(12):1486-95. (PMID: 20849101)
Angew Chem Int Ed Engl. 2018 Apr 3;57(15):4073-4077. (PMID: 29479784)
Acc Chem Res. 2009 Jan 20;42(1):33-44. (PMID: 18921985)
Acc Chem Res. 2018 May 15;51(5):1185-1195. (PMID: 29652129)
Chem Commun (Camb). 2021 Mar 11;57(21):2591-2604. (PMID: 33616584)
J Enzyme Inhib Med Chem. 2007 Oct;22(5):527-40. (PMID: 18035820)
Angew Chem Int Ed Engl. 2019 May 20;58(21):6814-6817. (PMID: 30964591)
J Comput Chem. 2003 Apr 30;24(6):669-81. (PMID: 12666158)
Nat Commun. 2014 Nov 07;5:5405. (PMID: 25377759)
Angew Chem Int Ed Engl. 2012 Feb 6;51(6):1379-82. (PMID: 22213630)
معلومات مُعتمدة: R35 GM136332 United States GM NIGMS NIH HHS
المشرفين على المادة: 0 (Organometallic Compounds)
5TWQ1V240M (Palladium)
تواريخ الأحداث: Date Created: 20211028 Date Completed: 20220303 Latest Revision: 20221116
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC8693446
DOI: 10.1021/jacs.1c08551
PMID: 34709804
قاعدة البيانات: MEDLINE
الوصف
تدمد:1520-5126
DOI:10.1021/jacs.1c08551