دورية أكاديمية

A spatial capture-recapture model for group-living species.

التفاصيل البيبلوغرافية
العنوان: A spatial capture-recapture model for group-living species.
المؤلفون: Emmet RL; Quantitative Ecology and Resource Management, University of Washington, Seattle, Washington, USA., Augustine BC; Department of Natural Resources and the Environment, Cornell University, Ithaca, New York, USA., Abrahms B; Department of Biology, Center for Ecosystem Sentinels, University of Washington, Seattle, Washington, USA., Rich LN; California Department of Fish and Wildlife, Wildlife Diversity Program, West Sacramento, California, USA., Gardner B; School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA.
المصدر: Ecology [Ecology] 2022 Oct; Vol. 103 (10), pp. e3576. Date of Electronic Publication: 2021 Dec 02.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Ecological Society of America Country of Publication: United States NLM ID: 0043541 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1939-9170 (Electronic) Linking ISSN: 00129658 NLM ISO Abbreviation: Ecology Subsets: MEDLINE
أسماء مطبوعة: Publication: Washington, DC : Ecological Society of America
Original Publication: Brooklyn, NY : Brooklyn Botanical Garden
مواضيع طبية MeSH: Ecosystem*, Computer Simulation ; Population Density ; Population Dynamics
مستخلص: Group living in species can have complex consequences for individuals, populations, and ecosystems. Therefore, estimating group density and size is often essential for understanding population dynamics, interspecific interactions, and conservation needs of group-living species. Spatial capture-recapture (SCR) has been used to model both individual and group density in group-living species, but modeling either individual-level or group-level detection results in different biases due to common characteristics of group-living species, such as highly cohesive movement or variation in group size. Furthermore, no SCR method currently estimates group density, individual density, and group size jointly. Using clustered point processes, we developed a cluster SCR model to estimate group density, individual density, and group size. We compared the model to standard SCR models using both a simulation study and a data set of detections of African wild dogs (Lycaon pictus), a group-living carnivore, on camera traps in northern Botswana. We then tested the model's performance under various scenarios of group movement in a separate simulation study. We found that the cluster SCR model outperformed a standard group-level SCR model when fitted to data generated with varying group sizes, and mostly recovered previous estimates of wild dog group density, individual density, and group size. We also found that the cluster SCR model performs better as individuals' movements become more correlated with their groups' movements. The cluster SCR model offers opportunities to investigate ecological hypotheses relating group size to population dynamics while accounting for cohesive movement behaviors in group-living species.
(© 2021 The Ecological Society of America.)
References: Angulo, E., G. M. Luque, S. D. Gregory, J. W. Wenzel, C. Bessa-Gomes, L. Berec, and F. Courchamp. 2018. Allee effects in social species. Journal of Animal Ecology 87:47-58.
Asensio, N., A. H. Korstjens, and F. Aureli. 2009. Fissioning minimizes ranging costs in spider monkeys: a multiple-level approach. Behavioral Ecology and Sociobiology 63:649-659.
Aureli, F., et al. 2008. Fission-fusion dynamics new research frameworks. Current Anthropology 49:627-654.
Bassing, S. B., D. E. Ausband, M. S. Mitchell, M. K. Schwartz, J. J. Nowak, G. C. Hale, and L. P. Waits. 2020. Immigration does not offset harvest mortality in groups of a cooperatively breeding carnivore. Animal Conservation 23:750-761.
Behr, D. M., J. W. McNutt, A. Ozgul, and G. Cozzi. 2020. When to stay and when to leave? Proximate causes of dispersal in an endangered social carnivore. Journal of Animal Ecology 89:2356-2366.
Belant, J. L., F. Bled, C. M. Wilton, R. Fyumagwa, S. B. Mwampeta, and D. E. Beyer Jr. 2016. Estimating lion abundance using N-mixture models for social species. Scientific Reports 6:35920.
Bischof, R., P. Dupont, C. Milleret, J. Chipperfield, and J. A. Royle. 2020. Consequences of ignoring group association in spatial capture-recapture analysis. Wildlife Biology 2020:1-10.
Borchers, D. L., and M. G. Efford. 2008. Spatially explicit maximum likelihood methods for capture-recapture studies. Biometrics 64:377-385.
Chandler, R. B., and J. A. Royle. 2013. Spatially explicit models for inference about density in unmarked or partially marked populations. Annals of Applied Statistics 7:936-954.
Courchamp, F., T. Clutton-Brock, and B. Grenfell. 2000. Multipack dynamics and the Allee effect in the African wild dog, Lycaon pictus. Animal Conservation 3:277-285.
Courchamp, F., and D. W. Macdonald. 2001. Crucial importance of pack size in the African wild dog Lycaon pictus. Animal Conservation 4:169-174.
Coverdale, T. C., T. R. Kartzinel, K. L. Grabowski, R. K. Shriver, A. A. Hassan, J. R. Goheen, T. M. Palmer, and R. M. Pringle. 2016. Elephants in the understory: opposing direct and indirect effects of consumption and ecosystem engineering by megaherbivores. Ecology 97:3219-3230.
Creel, S., and N. M. Creel. 2015. Opposing effects of group size on reproduction and survival in African wild dogs. Behavioral Ecology 26:1414-1422.
Creel, S., M. G. L. Mills, and J. W. McNutt. 2004. Demography and population dynamics of African wild dogs in three critical populations. Pages 337-350 in D. W. Macdonald, and C. Sillero-Zubiri, editors. The biology and conservation of wild canids. Oxford University Press, Oxford, UK.
Doolan, S. P., and D. W. Macdonald. 1996. Diet and foraging behaviour of group-living meerkats, Suricata suricatta, in the southern Kalahari. Journal of Zoology 239:697-716.
Elizalde, L., M. Arbetman, X. Arnan, P. Eggleton, I. R. Leal, M. N. Lescano, A. Saez, V. Werenkraut, and G. I. Pirk. 2020. The ecosystem services provided by social insects: traits, management tools and knowledge gaps. Biological Reviews 95:1418-1441.
Fryxell, J. M., A. Mosser, A. R. E. Sinclair, and C. Packer. 2007. Group formation stabilizes predator-prey dynamics. Nature 449:1041-1043.
Gardner, B., R. Sollmann, N. S. Kumar, D. Jathanna, and K. U. Karanth. 2018. State space and movement specification in open population spatial capture - recapture models. Ecology and Evolution 8:10336-10344.
Gittleman, J. L. 1989. Carnivore group living: comparative trends. Pages 183-207 in J. L. Gittleman, editor. Carnivore behavior, ecology, and evolution. Springer, Boston, Massachusetts, USA.
Hickey, J. R., and R. Sollmann. 2018. A new mark-recapture approach for abundance estimation of social species. PLoS One 13:e0208726.
Holekamp, K. E., S. T. Sakai, and B. L. Lundrigan. 2007. Social intelligence in the spotted hyena (Crocuta crocuta). Philosophical Transactions of the Royal Society B: Biological Sciences 362:523-538.
Kellner, K. 2016. jagsUI: a wrapper around ‘rjags’ to streamline ‘JAGS’ analyses. Version 1.5.1. R package. https://github.com/kenkellner/jagsUI.
Langrock, R., J. G. C. Hopcraft, P. G. Blackwell, V. Goodall, R. King, M. Niu, T. A. Patterson, M. W. Pedersen, A. Skarin, and Schick, R. S. 2014. Modelling group dynamic animal movement. Methods in Ecology and Evolution 5:190-199.
Lerch, B. A., B. C. Nolting, and K. C. Abbott. 2018. Why are demographic Allee effects so rarely seen in social animals? Journal of Animal Ecology 87:1547-1559.
Lima, S. L. 1995. Back to the basics of anti-predatory vigilance: the group-size effect. Animal Behaviour 49:11-20.
Lopez-Bao, J. V., R. Godinho, C. Pacheco, F. J. Lema, E. Garcia, L. Llaneza, V. Palacios, and J. Jimenez. 2018. Toward reliable population estimates of wolves by combining spatial capture-recapture models and non-invasive DNA monitoring. Scientific Reports 8:2177.
Mattioli, L., A. Canu, D. Passilongo, M. Scandura, and M. Apollonio. 2018. Estimation of pack density in grey wolf (Canis lupus) by applying spatially explicit capture-recapture models to camera trap data supported by genetic monitoring. Frontiers in Zoology 15:38.
McClintock, B. T., B. Abrahms, R. B. Chandler, P. B. Conn, S. J. Converse, R. L. Emmet, B. Gardner, N. J. Hostetter, and D. S. Johnson. 2021. An integrated path for spatial capture-recapture and animal movement modeling. Ecology e3473.
McClintock, B. T., and T. Michelot. 2018. momentuHMM: R package for generalized hidden Markov models of animal movement. Methods in Ecology and Evolution 9:1518-1530.
McNutt, J. W., R. Groom, and R. Woodroffe. 2019. Ambient temperature provides an adaptive explanation for seasonal reproduction in a tropical mammal. Journal of Zoology 309:153-160.
Mueller, T., et al. 2011. How landscape dynamics link individual- to population-level movement patterns: a multispecies comparison of ungulate relocation data. Global Ecology and Biogeography 20:683-694.
Nunn, C. L., F. Jordan, C. M. McCabe, J. L. Verdolin, and J. H. Fewell. 2015. Infectious disease and group size: More than just a numbers game. Philosophical Transactions of the Royal Society B: Biological Sciences 370:20140111.
Patterson, J. E. H., and K. E. Ruckstuhl. 2013. Parasite infection and host group size: A meta-analytical review. Parasitology 140:803-813.
Plummer, M. 2003. JAGS: a program for analysis of Bayesian graphical models using Gibbs Sampling. Pages 1-10 in Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003). Volume 124. Vienna, Austria.
Pomilia, M. A., J. Weldon McNutt, and N. R. Jordan. 2015. Ecological predictors of African wild dog ranging patterns in Northern Botswana. Journal of Mammalogy 96:1214-1223.
Rich, L. N., D. A. W. Miller, D. J. Muñoz, H. S. Robinson, J. W. McNutt, and M. J. Kelly. 2019. Sampling design and analytical advances allow for simultaneous density estimation of seven sympatric carnivore species from camera trap data. Biological Conservation 233:12-20.
Rich, L. N., D. A. W. Miller, H. S. Robinson, J. W. McNutt, and M. J. Kelly. 2017. Carnivore distributions in Botswana are shaped by resource availability and intraguild species. Journal of Zoology 303:90-98.
Royle, J. A., R. Sollmann, R. B. Chandler, and B. Gardner. 2013. Spatial capture-recapture. Academic Press, Cambridge, Massachusetts, USA.
Royle, J. A., A. K. Fuller, and C. Sutherland. 2016. Spatial capture-recapture models allowing Markovian transience or dispersal. Population Ecology 58:53-62.
Royle, J. A., and K. V. Young. 2008. A hierarchical model for spatial capture-recapture data. Ecology 89:2281-2289.
Russell, R. E., J. A. Royle, R. Desimone, M. K. Schwartz, V. L. Edwards, K. P. Pilgrim, and K. S. McKelvey. 2012. Estimating abundance of mountain lions from unstructured spatial sampling. Journal of Wildlife Management 76:1551-1561.
Schmidt, J. H., K. L. Rattenbury, J. P. Lawler, and M. C. MacCluskie. 2012. Using distance sampling and hierarchical models to improve estimates of Dall's sheep abundance. Journal of Wildlife Management 76:317-327.
Stevenson, B. C., P. van Dam-Bates, C. K. Y. Young, and J. Measey. 2021. A spatial capture-recapture model to estimate call rate and population density from passive acoustic surveys. Methods in Ecology and Evolution 12:432-442.
Woodroffe, R., H. M. K. O'Neill, and D. Rabaiotti. 2020a. Within- and between-group dynamics in an obligate cooperative breeder. Journal of Animal Ecology 89:530-540.
Woodroffe, R., D. Rabaiotti, D. K. Ngatia, T. R. C. Smallwood, S. Strebel, and H. M. K. O'Neill. 2020b. Dispersal behaviour of African wild dogs in Kenya. African Journal of Ecology 58:46-57.
Woodroffe, R., and C. Sillero-Zubiri. 2012. Lycaon pictus. The IUCN Red List of Threatened Species. Version 2012.2. https://doi.org/10.2305/IUCN.UK.2012.RLTS.T12436A16711116.en.
Wrona, F. J., and R. W. Jamieson Dixon. 1991. Group size and predation risk: a field analysis of encounter and dilution effects. The American Naturalist 137:186-201.
فهرسة مساهمة: Keywords: African wild dog; abundance; point process model; sociality; spatial capture-recapture
تواريخ الأحداث: Date Created: 20211029 Date Completed: 20221004 Latest Revision: 20221212
رمز التحديث: 20221212
DOI: 10.1002/ecy.3576
PMID: 34714927
قاعدة البيانات: MEDLINE
الوصف
تدمد:1939-9170
DOI:10.1002/ecy.3576