دورية أكاديمية

Hippocampal Cb 2 receptors: an untold story.

التفاصيل البيبلوغرافية
العنوان: Hippocampal Cb 2 receptors: an untold story.
المؤلفون: Visvanathar R; Behavioral Neurophysiology, Department of Neuroscience, Biomedical Center, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden., Papanikolaou M; Behavioral Neurophysiology, Department of Neuroscience, Biomedical Center, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden., Nôga DA; Behavioral Neurophysiology, Department of Neuroscience, Biomedical Center, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden., Pádua-Reis M; Behavioral Neurophysiology, Department of Neuroscience, Biomedical Center, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden., Tort ABL; Brain Institute, Federal University of Rio Grande do Norte, Salgado Filho 3000, 59076-550 Natal, RN, Brazil., Blunder M; Behavioral Neurophysiology, Department of Neuroscience, Biomedical Center, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden.
المصدر: Reviews in the neurosciences [Rev Neurosci] 2021 Oct 29; Vol. 33 (4), pp. 413-426. Date of Electronic Publication: 2021 Oct 29 (Print Publication: 2022).
نوع المنشور: Journal Article; Review; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: De Gruyter Country of Publication: Germany NLM ID: 8711016 Publication Model: Electronic-Print Cited Medium: Internet ISSN: 2191-0200 (Electronic) Linking ISSN: 03341763 NLM ISO Abbreviation: Rev Neurosci Subsets: MEDLINE
أسماء مطبوعة: Publication: 2011- : Berlin : De Gruyter
Original Publication: London, England : Freund Pub. House Ltd., c1986-
مواضيع طبية MeSH: Cannabinoids* , Mental Disorders*, Brain ; Endocannabinoids ; Hippocampus ; Humans
مستخلص: The field of cannabinoid research has been receiving ever-growing interest. Ongoing debates worldwide about the legislation of medical cannabis further motivates research into cannabinoid function within the central nervous system (CNS). To date, two well-characterized cannabinoid receptors exist. While most research has investigated Cb 1 receptors (Cb 1 Rs), Cb 2 receptors (Cb 2 Rs) in the brain have started to attract considerable interest in recent years. With indisputable evidence showing the wide-distribution of Cb 2 Rs in the brain of different species, they are no longer considered just peripheral receptors. However, in contrast to Cb 1 Rs, the functionality of central Cb 2 Rs remains largely unexplored. Here we review recent studies on hippocampal Cb 2 Rs. While conflicting results about their function have been reported, we have made significant progress in understanding the involvement of Cb 2 Rs in modulating cellular properties and network excitability. Moreover, Cb 2 Rs have been shown to be expressed in different subregions of the hippocampus, challenging our prior understanding of the endocannabinoid system. Although more insight into their functional roles is necessary, we propose that targeting hippocampal Cb 2 Rs may offer novel therapies for diseases related to memory and adult neurogenesis deficits.
(© 2021 Robin Visvanathar et al., published by De Gruyter, Berlin/Boston.)
References: Aghazadeh Tabrizi, M., Baraldi, P.G., Borea, P.A., and Varani, K. (2016). Medicinal chemistry, pharmacology, and potential therapeutic benefits of cannabinoid CB2 receptor agonists. Chem. Rev. 116: 519–560, https://doi.org/10.1021/acs.chemrev.5b00411.
Altman, J. and Das, G.D. (1965). Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol. 124: 319–335, https://doi.org/10.1002/cne.901240303.
An, D., Peigneur, S., Hendrickx, L.A., and Tytgat, J. (2020). Targeting cannabinoid receptors: current status and prospects of natural products. Int. J. Mol. Sci. 21: 5064, https://doi.org/10.3390/ijms21145064.
Ashton, J.C., Friberg, D., Darlington, C.L., and Smith, P.F. (2006). Expression of the cannabinoid CB2 receptor in the rat cerebellum: an immunohistochemical study. Neurosci. Lett. 396: 113–116, https://doi.org/10.1016/j.neulet.2005.11.038.
Askari, V.R. and Shafiee-Nick, R. (2019). Promising neuroprotective effects of β-caryophyllene against LPS-induced oligodendrocyte toxicity: a mechanistic study. Biochem. Pharmacol. 159: 154–171, https://doi.org/10.1016/j.bcp.2018.12.001.
Atwood, B.K. and Mackie, K. (2010). CB2: a cannabinoid receptor with an identity crisis. Br. J. Pharmacol. 160: 467–479, https://doi.org/10.1111/j.1476-5381.2010.00729.x.
Avraham, H.K., Jiang, S., Fu, Y., Rockenstein, E., Makriyannis, A., Zvonok, A., Masliah, E., and Avraham, S. (2014). The cannabinoid CB2 receptor agonist AM1241 enhances neurogenesis in GFAP/Gp120 transgenic mice displaying deficits in neurogenesis. Br. J. Pharmacol. 171: 468–479, https://doi.org/10.1111/bph.12478.
Baek, J.-H., Zheng, Y., Darlington, C.L., and Smith, P.F. (2008). Cannabinoid CB2 receptor expression in the rat brainstem cochlear and vestibular nuclei. Acta Otolaryngol. 128: 961–967, https://doi.org/10.1080/00016480701796944.
Basu, S. and Dittel, B.N. (2011). Unraveling the complexities of cannabinoid receptor 2 (CB2) immune regulation in health and disease. Immunol. Res. 51: 26–38, https://doi.org/10.1007/s12026-011-8210-5.
Bickle, J. (2016). Revolutions in neuroscience: tool development. Front. Syst. Neurosci. 10: 24, doi:https://doi.org/10.3389/fnsys.2016.00024.
Branconnier, R.J. (1983). The efficacy of the cerebral metabolic enhancers in the treatment of senile dementia. Psychopharmacol. Bull. 19: 212–219.
Brusco, A., Tagliaferro, P., Saez, T., and Onaivi, E.S. (2008). Postsynaptic localization of CB2 cannabinoid receptors in the rat hippocampus. Synapse 62: 944–949, https://doi.org/10.1002/syn.20569.
Cabral, G.A. and Griffin-Thomas, L. (2009). Emerging role of the CB2 cannabinoid receptor in immune regulation and therapeutic prospects. Expet Rev. Mol. Med. 11: e3, https://doi.org/10.1017/s1462399409000957.
Çakır, M., Tekin, S., Doğanyiğit, Z., Erden, Y., Soytürk, M., Çiğremiş, Y., and Sandal, S. (2019). Cannabinoid type 2 receptor agonist JWH-133, attenuates Okadaic acid induced spatial memory impairment and neurodegeneration in rats. Life Sci. 217: 25–33.
Cameron, H.A. and Glover, L.R. (2015). Adult neurogenesis: beyond learning and memory. Annu. Rev. Psychol. 66: 53–81, https://doi.org/10.1146/annurev-psych-010814-015006.
Campos, A.C., Paraíso-Luna, J., Fogaça, M.V., Guimarães, F.S., and Galve-Roperh, I. (2017). Cannabinoids as regulators of neural development and adult neurogenesis. In: Pébay, A., and Wong, R.C. (Eds.), Lipidomics of stem cells. Springer, Cham, Switzerland, pp. 117–136.
Cao, Q., Liu, X., Yang, F., and Wang, H. (2018). CB2R induces a protective response for epileptic seizure via the PI3K 110α-AKT signaling pathway. Exp. Ther. Med. 16: 4784–4790, https://doi.org/10.3892/etm.2018.6788.
Cassano, T., Calcagnini, S., Pace, L., De Marco, F., Romano, A., and Gaetani, S. (2017). Cannabinoid receptor 2 signaling in neurodegenerative disorders: from pathogenesis to a promising therapeutic target. Front. Neurosci. 11: 30, doi:https://doi.org/10.3389/fnins.2017.00030.
Castillo, P.E., Younts, T.J., Chávez, A.E., and Hashimotodani, Y. (2012). Endocannabinoid signaling and synaptic function. Neuron 76: 70–81, https://doi.org/10.1016/j.neuron.2012.09.020.
Chen, D., Gao, M., Gao, F., Su, Q., and Wu, J. (2017). Brain cannabinoid receptor 2: expression, function and modulation. Acta Pharmacol. Sin. 38: 312–316, https://doi.org/10.1038/aps.2016.149.
Chevaleyre, V. and Castillo, P.E. (2003). Heterosynaptic LTD of hippocampal GABAergic synapses: a novel role of endocannabinoids in regulating excitability. Neuron 38: 461–472, https://doi.org/10.1016/s0896-6273(03)00235-6.
Console-Bram, L., Marcu, J., and Abood, M.E. (2012). Cannabinoid receptors: nomenclature and pharmacological principles. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 38: 4–15, https://doi.org/10.1016/j.pnpbp.2012.02.009.
Cristino, L., Imperatore, R., and Di Marzo, V. (2017). Chapter four - techniques for the cellular and subcellular localization of endocannabinoid receptors and enzymes in the mammalian brain. In: Reggio, P.H. (Ed.), Methods in enzymology. Academic Press, San Diego, USA, pp. 61–98.
Dagon, Y., Avraham, Y., Ilan, Y., Mechoulam, R., and Berry, E.M. (2007). Cannabinoids ameliorate cerebral dysfunction following liver failure via AMP-activated protein kinase. FASEB J 21: 2431–2441, https://doi.org/10.1096/fj.06-7705com.
den Boon, F.S., Chameau, P., Schaafsma-Zhao, Q., van Aken, W., Bari, M., Oddi, S., Kruse, C.G., Maccarrone, M., Wadman, W.J., and Werkman, T.R. (2012). Excitability of prefrontal cortical pyramidal neurons is modulated by activation of intracellular type-2 cannabinoid receptors. Proc. Natl. Acad. Sci. U.S.A. 109: 3534, https://doi.org/10.1073/pnas.1118167109.
Deng, W., Aimone, J.B., and Gage, F.H. (2010). New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat. Rev. Neurosci. 11: 339–350, https://doi.org/10.1038/nrn2822.
Devane, W.A., Hanus, L., Breuer, A., Pertwee, R.G., Stevenson, L.A., Griffin, G., Gibson, D., Mandelbaum, A., Etinger, A., and Mechoulam, R. (1992). Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258: 1946–1949, https://doi.org/10.1126/science.1470919.
Dhopeshwarkar, A. and Mackie, K. (2014). CB2 cannabinoid receptors as a therapeutic target—what does the future hold? Mol. Pharmacol. 86: 430–437, https://doi.org/10.1124/mol.114.094649.
Egertová, M. and Elphick, M.R. (2000). Localisation of cannabinoid receptors in the rat brain using antibodies to the intracellular C-terminal tail of CB1. J. Comp. Neurol. 422: 159–171, https://doi.org/10.1002/(sici)1096-9861(20000626)422:2<159::aid-cne1>3.0.co;2-1.
Fanselow, M.S. and Dong, H.-W. (2010). Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65: 7–19, https://doi.org/10.1016/j.neuron.2009.11.031.
García-Gutiérrez, M.S. and Manzanares, J. (2011). Overexpression of CB2 cannabinoid receptors decreased vulnerability to anxiety and impaired anxiolytic action of alprazolam in mice. J. Psychopharmacol. 25: 111–120, https://doi.org/10.1177/0269881110379507.
García-Gutiérrez, M.S., García-Bueno, B., Zoppi, S., Leza, J.C., and Manzanares, J. (2012). Chronic blockade of cannabinoid CB2 receptors induces anxiolytic-like actions associated with alterations in GABA(A) receptors. Br. J. Pharmacol. 165: 951–964, https://doi.org/10.1111/j.1476-5381.2011.01625.x.
Gómez-Gálvez, Y., Palomo-Garo, C., Fernández-Ruiz, J., and García, C. (2016). Potential of the cannabinoid CB(2) receptor as a pharmacological target against inflammation in Parkinson’s disease. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 64: 200–208, https://doi.org/10.1016/j.pnpbp.2015.03.017.
Gonçalves, J.T., Schafer, S.T., and Gage, F.H. (2016). Adult neurogenesis in the hippocampus: from stem cells to behavior. Cell 167: 897–914, https://doi.org/10.1016/j.cell.2016.10.021.
Gong, J.-P., Onaivi, E.S., Ishiguro, H., Liu, Q.-R., Tagliaferro, P.A., Brusco, A., and Uhl, G.R. (2006). Cannabinoid CB2 receptors: immunohistochemical localization in rat brain. Brain Res. 1071: 10–23, https://doi.org/10.1016/j.brainres.2005.11.035.
Grünblatt, E., Zander, N., Bartl, J., Jie, L., Monoranu, C.-M., Arzberger, T., Ravid, R., Roggendorf, W., Gerlach, M., and Riederer, P. (2007). Comparison analysis of gene expression patterns between sporadic Alzheimer’s and Parkinson’s disease. J. Alzheim. Dis. 12: 291–311, https://doi.org/10.3233/jad-2007-12402.
Guida, F., Luongo, L., Boccella, S., Giordano, M.E., Romano, R., Bellini, G., Manzo, I., Furiano, A., Rizzo, A., Imperatore, R., et al.. (2017). Palmitoylethanolamide induces microglia changes associated with increased migration and phagocytic activity: involvement of the CB2 receptor. Sci. Rep. 7: 375, https://doi.org/10.1038/s41598-017-00342-1.
Herkenham, M., Lynn, A., Johnson, M., Melvin, L., de Costa, B., and Rice, K. (1991). Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J. Neurosci. 11: 563–583, https://doi.org/10.1523/jneurosci.11-02-00563.1991.
Horgusluoglu, E., Nudelman, K., Nho, K., and Saykin, A.J. (2017). Adult neurogenesis and neurodegenerative diseases: a systems biology perspective. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 174: 93–112, https://doi.org/10.1002/ajmg.b.32429.
Jorgensen, C. (2018). Adult mammalian neurogenesis and motivated behaviors. Integr. Zool. 13: 655–672, https://doi.org/10.1111/1749-4877.12335.
Kano, M., Ohno-Shosaku, T., Hashimotodani, Y., Uchigashima, M., and Watanabe, M. (2009). Endocannabinoid-mediated control of synaptic transmission. Physiol. Rev. 89: 309–380, https://doi.org/10.1152/physrev.00019.2008.
Katona, I., Sperlágh, B., Sı́k, A., Käfalvi, A., Vizi, E.S., Mackie, K., and Freund, T.F. (1999). Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J. Neurosci. 19: 4544–4558, https://doi.org/10.1523/jneurosci.19-11-04544.1999.
Kim, J. and Li, Y. (2015). Chronic activation of CB2 cannabinoid receptors in the hippocampus increases excitatory synaptic transmission. J. Physiol. 593: 871–886, https://doi.org/10.1113/jphysiol.2014.286633.
Klausberger, T. and Somogyi, P. (2008). Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321: 53–57, https://doi.org/10.1126/science.1149381.
Köfalvi, A., Lemos, C., Martín-Moreno, A.M., Pinheiro, B.S., García-García, L., Pozo, M.A., Valério-Fernandes, Â., Beleza, R.O., Agostinho, P., Rodrigues, R.J., et al.. (2016). Stimulation of brain glucose uptake by cannabinoid CB2 receptors and its therapeutic potential in Alzheimer’s disease. Neuropharmacology 110: 519–529, https://doi.org/10.1016/j.neuropharm.2016.03.015.
Kopach, O., Vats, J., Netsyk, O., Voitenko, N., Irving, A., and Fedirko, N. (2012). Cannabinoid receptors in submandibular acinar cells: functional coupling between saliva fluid and electrolytes secretion and Ca2+ signalling. J. Cell Sci. 125: 1884–1895, https://doi.org/10.1242/jcs.088930.
Leuner, B. and Gould, E. (2010). Structural plasticity and hippocampal function. Annu. Rev. Psychol. 61: 111–140. 10.1146/annurev.psych.093008.100359 19575621.
Li, Y. and Kim, J. (2015). Neuronal expression of CB2 cannabinoid receptor mRNAs in the mouse hippocampus. Neuroscience 311: 253–267, https://doi.org/10.1016/j.neuroscience.2015.10.041.
Li, Y. and Kim, J. (2016a). CB2 cannabinoid receptor knockout in mice impairs contextual long-term memory and enhances spatial working memory. Neural Plast. 2016: 9817089, https://doi.org/10.1155/2016/9817089.
Li, Y. and Kim, J. (2016b). Deletion of CB2 cannabinoid receptors reduces synaptic transmission and long‐term potentiation in the mouse hippocampus. Hippocampus 26: 275–281, https://doi.org/10.1002/hipo.22558.
Li, Y. and Kim, J. (2017). Distinct roles of neuronal and microglial CB2 cannabinoid receptors in the mouse hippocampus. Neuroscience 363: 11–25, https://doi.org/10.1016/j.neuroscience.2017.08.053.
Li, X., Hua, T., Vemuri, K., Ho, J.-H., Wu, Y., Wu, L., Popov, P., Benchama, O., Zvonok, N., Locke, K., et al.. (2019). Crystal structure of the human cannabinoid receptor CB2. Cell 176: 459–467.e13, https://doi.org/10.1016/j.cell.2018.12.011.
Lisboa, S.F., Vila-Verde, C., Rosa, J., Uliana, D.L., Stern, C.A. J., Bertoglio, L.J., Resstel, L.B., and Guimaraes, F.S. (2019). Tempering aversive/traumatic memories with cannabinoids: a review of evidence from animal and human studies. Psychopharmacology (Berlin) 236: 201–226, https://doi.org/10.1007/s00213-018-5127-x.
Liu, Q.-R., Pan, C.-H., Hishimoto, A., Li, C.-Y., Xi, Z.-X., Llorente‐Berzal, A., Viveros, M.-P., Ishiguro, H., Arinami, T., Onaivi, E.S., et al.. (2009). Species differences in cannabinoid receptor 2 (CNR2 gene): identification of novel human and rodent CB2 isoforms, differential tissue expression and regulation by cannabinoid receptor ligands. Genes Brain Behav. 8: 519–530, https://doi.org/10.1111/j.1601-183x.2009.00498.x.
López, A., Aparicio, N., Pazos, M.R., Grande, M.T., Barreda-Manso, M.A., Benito-Cuesta, I., Vázquez, C., Amores, M., Ruiz-Pérez, G., García-García, E., et al.. (2018). Cannabinoid CB2 receptors in the mouse brain: relevance for Alzheimer’s disease. J. Neuroinflammation 15: 158, https://doi.org/10.1186/s12974-018-1174-9.
Lou, J., Teng, Z., Zhang, L., Yang, J., Ma, L., Wang, F., Tian, X., An, R., Yang, M., Zhang, Q., et al.. (2017). β-Caryophyllene/hydroxypropyl-β-cyclodextrin inclusion complex improves cognitive deficits in rats with vascular dementia through the cannabinoid receptor type 2 -mediated pathway. Front. Pharmacol. 8, https://doi.org/10.3389/fphar.2017.00002.
Luo, X.-Q., Li, A., Yang, X., Xiao, X., Hu, R., Wang, T.-W., Dou, X.-Y., Yang, D.-J., and Dong, Z. (2018). Paeoniflorin exerts neuroprotective effects by modulating the M1/M2 subset polarization of microglia/macrophages in the hippocampal CA1 region of vascular dementia rats via cannabinoid receptor 2. Chin. Med. 13: 14, https://doi.org/10.1186/s13020-018-0173-1.
Luongo, L., Palazzo, E., Tambaro, S., Giordano, C., Gatta, L., Scafuro, M.A., Rossi, F.S., Lazzari, P., Pani, L., de Novellis, V., et al.. (2010). 1-(2’,4’-dichlorophenyl)-6-methyl-N-cyclohexylamine-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxamide, a novel CB2 agonist, alleviates neuropathic pain through functional microglial changes in mice. Neurobiol. Dis. 37: 177–185, https://doi.org/10.1016/j.nbd.2009.09.021.
Mailleux, P. and Vanderhaeghen, J.-J. (1992). Distribution of neuronal cannabinoid receptor in the adult rat brain: a comparative receptor binding radioautography and in situ hybridization histochemistry. Neuroscience 48: 655–668, https://doi.org/10.1016/0306-4522(92)90409-u.
Martín-Moreno, A.M., Brera, B., Spuch, C., Carro, E., García-García, L., Delgado, M., Pozo, M.A., Innamorato, N.G., Cuadrado, A., and de Ceballos, M.L. (2012). Prolonged oral cannabinoid administration prevents neuroinflammation, lowers β-amyloid levels and improves cognitive performance in Tg APP 2576 mice. J. Neuroinflammation 9: 1–15, https://doi.org/10.1186/1742-2094-9-8.
Matsuda, L.A., Lolait, S.J., Brownstein, M.J., Young, A.C., and Bonner, T.I. (1990). Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346: 561–564, https://doi.org/10.1038/346561a0.
Matsuda, L.A., Bonner, T.I., and Lolait, S.J. (1993). Localization of cannabinoid receptor mRNA in rat brain. J. Comp. Neurol. 327: 535–550, https://doi.org/10.1002/cne.903270406.
Mechoulam, R. and Parker, L.A. (2013). The endocannabinoid system and the brain. Annu. Rev. Psychol. 64: 21–47, https://doi.org/10.1146/annurev-psych-113011-143739.
Mechoulam, R., Ben-Shabat, S., Hanus, L., Ligumsky, M., Kaminski, N.E., Schatz, A.R., Gopher, A., Almog, S., Martin, B.R., and Compton, D.R. (1995). Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 50: 83–90, https://doi.org/10.1016/0006-2952(95)00109-d.
Mensching, L., Djogo, N., Keller, C., Rading, S., and Karsak, M. (2019). Stable adult hippocampal neurogenesis in cannabinoid receptor CB2 deficient mice. Int. J. Mol. Sci. 20, https://doi.org/10.3390/ijms20153759.
Messier, C. (2004). Glucose improvement of memory: a review. Eur. J. Pharmacol. 490: 33–57, https://doi.org/10.1016/j.ejphar.2004.02.043.
Miller, L.K. and Devi, L.A. (2011). The highs and lows of cannabinoid receptor expression in disease: mechanisms and their therapeutic implications. Pharmacol. Rev. 63: 461–470, https://doi.org/10.1124/pr.110.003491.
Miraucourt, L.S., Tsui, J., Gobert, D., Desjardins, J.-F., Schohl, A., Sild, M., Spratt, P., Castonguay, A., De Koninck, Y., Marsh-Armstrong, N., et al.. (2016). Endocannabinoid signaling enhances visual responses through modulation of intracellular chloride levels in retinal ganglion cells. eLife 5, https://doi.org/10.7554/eLife.15932.
Monory, K., Polack, M., Remus, A., Lutz, B., and Korte, M. (2015). Cannabinoid CB1 receptor calibrates excitatory synaptic balance in the mouse hippocampus. J. Neurosci. 35: 3842–3850, https://doi.org/10.1523/jneurosci.3167-14.2015.
Morena, M., Berardi, A., Colucci, P., Palmery, M., Trezza, V., Hill, M.N., and Campolongo, P. (2018). Enhancing endocannabinoid neurotransmission augments the efficacy of extinction training and ameliorates traumatic stress-induced behavioral alterations in rats. Neuropsychopharmacology 43: 1284–1296, https://doi.org/10.1038/npp.2017.305.
Morgan, N.H., Stanford, I.M., and Woodhall, G.L. (2009). Functional CB2 type cannabinoid receptors at CNS synapses. Neuropharmacology 57: 356–368, https://doi.org/10.1016/j.neuropharm.2009.07.017.
Munro, S., Thomas, K.L., and Abu-Shaar, M. (1993). Molecular characterization of a peripheral receptor for cannabinoids. Nature 365: 61–65, https://doi.org/10.1038/365061a0.
Nadel, L., Hoscheidt, S., and Ryan, L.R. (2013). Spatial cognition and the hippocampus: the anterior-posterior axis. J. Cognit. Neurosci. 25: 22–28, https://doi.org/10.1162/jocn&#95;a&#95;00313.
Nasehi, M., Hajikhani, M., Ebrahimi-Ghiri, M., and Zarrindast, M.-R. (2017). Interaction between NMDA and CB2 function in the dorsal hippocampus on memory consolidation impairment: an isobologram analysis. Psychopharmacology (Berlin) 234: 507–514, https://doi.org/10.1007/s00213-016-4481-9.
Nasehi, M., Gerami-Majd, F., Khakpai, F., and Zarrindast, M.-R. (2018). Dorsal hippocampal cannabinergic and GABAergic systems modulate memory consolidation in passive avoidance task. Brain Res. Bull. 137: 197–203, https://doi.org/10.1016/j.brainresbull.2017.11.017.
Nasehi, M., Forouzanmehr, E., Khakpai, F., and Zarrindast, M.-R. (2020). Possible interaction between the ventral hippocampal cannabinoid CB2 and muscarinic acetylcholine receptors on the modulation of memory consolidation in mice. NeuroReport 31: 174–183, https://doi.org/10.1097/wnr.0000000000001381.
Navarrete, F., Pérez-Ortiz, J.M., and Manzanares, J. (2012). Cannabinoid CB₂ receptor-mediated regulation of impulsive-like behaviour in DBA/2 mice. Br. J. Pharmacol. 165: 260–273, https://doi.org/10.1111/j.1476-5381.2011.01542.x.
Navarrete, F., García-Gutiérrez, M.S., Aracil-Fernández, A., Lanciego, J.L., and Manzanares, J. (2018). Cannabinoid CB1 and CB2 receptors, and monoacylglycerol lipase gene expression alterations in the basal ganglia of patients with Parkinson’s disease. Neurotherapeutics 15: 459–469, https://doi.org/10.1007/s13311-018-0603-x.
Nevalainen, T. (2014). Recent development of CB2 selective and peripheral CB1/CB2 cannabinoid receptor ligands. Curr. Med. Chem. 21: 187–203, https://doi.org/10.2174/09298673113206660296.
Neves, L.M.S., Gonçalves, E.C.D., Cavalli, J., Vieira, G., Laurindo, L.R., Simões, R.R., Coelho, I.S., Santos, A.R.S., Marcolino, A.M., Cola, M., et al.. (2018). Photobiomodulation therapy improves acute inflammatory response in mice: the role of cannabinoid receptors/ATP-sensitive K+ channel/p38-MAPK signalling pathway. Mol. Neurobiol. 55: 5580–5593, https://doi.org/10.1007/s12035-017-0792-z.
Onaivi, E.S. (2006). Neuropsychobiological evidence for the functional presence and expression of cannabinoid CB2 receptors in the brain. Neuropsychobiology 54: 231–246, https://doi.org/10.1159/000100778.
Onaivi, E.S., Ishiguro, H., Gong, J.-P., Patel, S., Perchuk, A., Meozzi, P.A., Myers, L., Mora, Z., Tagliaferro, P., Gardner, E., et al.. (2006). Discovery of the presence and functional expression of cannabinoid CB2 receptors in brain. Ann. N. Y. Acad. Sci. 1074: 514–536, https://doi.org/10.1196/annals.1369.052.
Onaivi, E.S., Ishiguro, H., Gu, S., and Liu, Q.-R. (2011). CNS effects of CB2 cannabinoid receptors: beyond neuro-immuno-cannabinoid activity. J. Psychopharmacol. 26: 92–103, https://doi.org/10.1177/0269881111400652.
Palazuelos, J., Aguado, T., Egia, A., Mechoulam, R., Guzmán, M., and Galve-Roperh, I. (2006). Non-psychoactive CB2 cannabinoid agonists stimulate neural progenitor proliferation. FASEB J 20: 2405–2407, https://doi.org/10.1096/fj.06-6164fje.
Palazuelos, J., Aguado, T., Pazos, M.R., Julien, B., Carrasco, C., Resel, E., Sagredo, O., Benito, C., Romero, J., Azcoitia, I., et al.. (2009). Microglial CB2 cannabinoid receptors are neuroprotective in Huntington’s disease excitotoxicity. Brain 132: 3152–3164, https://doi.org/10.1093/brain/awp239.
Palazuelos, J., Ortega, Z., Díaz-Alonso, J., Guzmán, M., and Galve-Roperh, I. (2012). CB2 cannabinoid receptors promote neural progenitor cell proliferation via mTORC1 signaling. J. Biol. Chem. 287: 1198–1209, https://doi.org/10.1074/jbc.m111.291294.
Perry, V.H. and Teeling, J. (2013). Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin. Immunopathol. 35: 601–612, https://doi.org/10.1007/s00281-013-0382-8.
Qian, W.-J., Yin, N., Gao, F., Miao, Y., Li, Q., Li, F., Sun, X.-H., Yang, X.-L., and Wang, Z. (2017). Cannabinoid CB1 and CB2 receptors differentially modulate L- and T-type Ca2+ channels in rat retinal ganglion cells. Neuropharmacology 124: 143–156, https://doi.org/10.1016/j.neuropharm.2017.04.027.
Racz, I., Nadal, X., Alferink, J., Baños, J.E., Rehnelt, J., Martín, M., Pintado, B., Gutierrez-Adan, A., Sanguino, E., Manzanares, J., et al.. (2008). Crucial role of CB2 cannabinoid receptor in the regulation of central immune responses during neuropathic pain. J. Neurosci. 28: 12125–12135, https://doi.org/10.1523/jneurosci.3400-08.2008.
Ratano, P., Palmery, M., Trezza, V., and Campolongo, P. (2017). Cannabinoid modulation of memory consolidation in rats: beyond the role of cannabinoid receptor subtype 1. Front. Pharmacol. 8: 200, https://doi.org/10.3389/fphar.2017.00200.
Ratano, P., Petrella, C., Forti, F., Passeri, P.P., Morena, M., Palmery, M., Trezza, V., Severini, C., and Campolongo, P. (2018). Pharmacological inhibition of 2-arachidonoilglycerol hydrolysis enhances memory consolidation in rats through CB2 receptor activation and mTOR signaling modulation. Neuropharmacology 138: 210–218, https://doi.org/10.1016/j.neuropharm.2018.05.030.
Raymundi, A.M., da Silva, T.R., Zampronio, A.R., Guimarães, F.S., Bertoglio, L.J., and Stern, C.A.J. (2020). A time‐dependent contribution of hippocampal CB1, CB2 and PPARγ receptors to cannabidiol‐induced disruption of fear memory consolidation. Br. J. Pharmacol. 177: 945–957, https://doi.org/10.1111/bph.14895.
Robertson, J.M., Achua, J.K., Smith, J.P., Prince, M.A., Staton, C.D., Ronan, P.J., Summers, T.R., and Summers, C.H. (2017). Anxious behavior induces elevated hippocampal CB2 receptor gene expression. Neuroscience 352: 273–284, doi:10.1016/j.neuroscience.2017.03.061. 28392296.
Robinson, L., Goonawardena, A.V., Pertwee, R., Hampson, R.E., Platt, B., and Riedel, G. (2010). WIN55,212-2 induced deficits in spatial learning are mediated by cholinergic hypofunction. Behav. Brain Res. 208: 584–592, https://doi.org/10.1016/j.bbr.2010.01.004.
Rodrigues, R.S., Ribeiro, F.F., Ferreira, F., Vaz, S.H., Sebastião, A.M., and Xapelli, S. (2017). Interaction between cannabinoid type 1 and type 2 receptors in the modulation of subventricular zone and dentate gyrus neurogenesis. Front. Pharmacol. 8, https://doi.org/10.3389/fphar.2017.00516.
Rodríguez-Cueto, C., Benito, C., Romero, J., Hernández-Gálvez, M., Gómez-Ruiz, M., and Fernández-Ruiz, J. (2014a). Endocannabinoid-hydrolysing enzymes in the post-mortem cerebellum of humans affected by hereditary autosomal dominant ataxias. Pathobiol. J. Immunopathol. Mol. Cell. Biol. 81: 149–159, https://doi.org/10.1159/000358127.
Rodríguez-Cueto, C., Benito, C., Fernández-Ruiz, J., Romero, J., Hernández-Gálvez, M., and Gómez-Ruiz, M. (2014b). Changes in CB(1) and CB(2) receptors in the post-mortem cerebellum of humans affected by spinocerebellar ataxias. Br. J. Pharmacol. 171: 1472–1489, https://doi.org/10.1111/bph.12283.
Schmöle, A.-C., Lundt, R., Gennequin, B., Schrage, H., Beins, E., Krämer, A., Zimmer, T., Limmer, A., Zimmer, A., and Otte, D.-M. (2015). Expression analysis of CB2-GFP BAC transgenic mice. PLOS ONE 10: e0138986, https://doi.org/10.1371/journal.pone.0138986.
Snyder, J.S., Soumier, A., Brewer, M., Pickel, J., and Cameron, H.A. (2011). Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 476: 458–461, https://doi.org/10.1038/nature10287.
Stella, N., Schweitzer, P., and Piomelli, D. (1997). A second endogenous cannabinoid that modulates long-term potentiation. Nature 388: 773–778, https://doi.org/10.1038/42015.
Stempel, A.V., Stumpf, A., Zhang, H.-Y., Özdoğan, T., Pannasch, U., Theis, A.-K., Otte, D.-M., Wojtalla, A., Rácz, I., Ponomarenko, A., et al.. (2016). Cannabinoid type 2 receptors mediate a cell type-specific plasticity in the hippocampus. Neuron 90: 795–809, https://doi.org/10.1016/j.neuron.2016.03.034.
Stern, C.A.J., da Silva, T.R., Raymundi, A.M., de Souza, C.P., Hiroaki-Sato, V.A., Kato, L., Guimarães, F.S., Andreatini, R., Takahashi, R.N., and Bertoglio, L.J. (2017). Cannabidiol disrupts the consolidation of specific and generalized fear memories via dorsal hippocampus CB1 and CB2 receptors. Neuropharmacology 125: 220–230, https://doi.org/10.1016/j.neuropharm.2017.07.024.
Stumpf, A., Parthier, D., Sammons, R.P., Stempel, A.V., Breustedt, J., Rost, B.R., and Schmitz, D. (2018). Cannabinoid type 2 receptors mediate a cell type-specific self-inhibition in cortical neurons. Neuropharmacology 139: 217–225, https://doi.org/10.1016/j.neuropharm.2018.07.020.
Sun, L., Dong, R., Xu, X., Yang, X., and Peng, M. (2017). Activation of cannabinoid receptor type 2 attenuates surgery-induced cognitive impairment in mice through anti-inflammatory activity. J. Neuroinflammation 14, https://doi.org/10.1186/s12974-017-0913-7.
Tang, Y., Bao, J.S., Su, J.H., and Huang, W. (2017). MicroRNA-139 modulates Alzheimer’s-associated pathogenesis in SAMP8 mice by targeting cannabinoid receptor type 2. Genet. Mol. Res. 16, https://doi.org/10.4238/gmr16019166.
Tchantchou, F. and Zhang, Y. (2013). Selective inhibition of alpha/beta-hydrolase domain 6 attenuates neurodegeneration, alleviates blood brain barrier breakdown, and improves functional recovery in a mouse model of traumatic brain injury. J. Neurotrauma 30: 565–579, https://doi.org/10.1089/neu.2012.2647.
Torres, E., Gutierrez-Lopez, M.D., Mayado, A., Rubio, A., O’Shea, E., and Colado, M.I. (2011). Changes in interleukin-1 signal modulators induced by 3,4-methylenedioxymethamphetamine (MDMA): regulation by CB2 receptors and implications for neurotoxicity. J. Neuroinflammation 8: 53, https://doi.org/10.1186/1742-2094-8-53.
Tsou, K., Brown, S., Sañudo-Peña, M.C., Mackie, K., and Walker, J.M. (1998). Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience 83: 393–411, https://doi.org/10.1016/s0306-4522(97)00436-3.
Tsou, K., Mackie, K., Sañudo-Peña, M.C., and Walker, J.M. (1999). Cannabinoid CB1 receptors are localized primarily on cholecystokinin-containing GABAergic interneurons in the rat hippocampal formation. Neuroscience 93: 969–975, https://doi.org/10.1016/s0306-4522(99)00086-x.
Turcotte, C., Blanchet, M.-R., Laviolette, M., and Flamand, N. (2016). The CB2 receptor and its role as a regulator of inflammation. Cell. Mol. Life Sci. 73: 4449–4470, https://doi.org/10.1007/s00018-016-2300-4.
Van Sickle, M.D., Duncan, M., Kingsley, P.J., Mouihate, A., Urbani, P., Mackie, K., Stella, N., Makriyannis, A., Piomelli, D., Davison, J.S., et al.. (2005). Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science 310: 329–332, https://doi.org/10.1126/science.1115740.
Viscomi, M.T., Oddi, S., Latini, L., Pasquariello, N., Florenzano, F., Bernardi, G., Molinari, M., and Maccarrone, M. (2009). Selective CB2 receptor agonism protects central neurons from remote axotomy-induced apoptosis through the PI3k/Akt pathway. J. Neurosci. 29: 4564–4570, doi:https://10.1523/JNEUROSCI.0786-09.2009.
Walter, L., Franklin, A., Witting, A., Wade, C., Xie, Y., Kunos, G., Mackie, K., and Stella, N. (2003). Nonpsychotropic cannabinoid receptors regulate microglial cell migration. J. Neurosci. 23: 1398–1405, https://doi.org/10.1523/jneurosci.23-04-01398.2003.
Wen, J., Ribeiro, R., Tanaka, M., and Zhang, Y. (2015). Activation of CB2 receptor is required for the therapeutic effect of ABHD6 inhibition in experimental autoimmune encephalomyelitis. Neuropharmacology 99: 196–209, https://doi.org/10.1016/j.neuropharm.2015.07.010.
Winters, B.D., Krüger, J.M., Huang, X., Gallaher, Z.R., Ishikawa, M., Czaja, K., Krueger, J.M., Huang, Y.H., Schlüter, O.M., and Dong, Y. (2012). Cannabinoid receptor 1-expressing neurons in the nucleus accumbens. Proc. Natl. Acad. Sci. U.S.A. 109: E2717–E2725, https://doi.org/10.1073/pnas.1206303109.
Wu, Q. and Wang, H. (2018). The spatiotemporal expression changes of CB2R in the hippocampus of rats following pilocarpine-induced status epilepticus. Epilepsy Res. 148: 8–16, https://doi.org/10.1016/j.eplepsyres.2018.10.002.
Wu, J., Hocevar, M., Foss, J.F., Bie, B., and Naguib, M. (2017). Activation of CB2 receptor system restores cognitive capacity and hippocampal Sox2 expression in a transgenic mouse model of Alzheimer’s disease. Eur. J. Pharmacol. 811: 12–20, https://doi.org/10.1016/j.ejphar.2017.05.044.
Zarruk, J.G., Fernández-López, D., García-Yébenes, I., García-Gutiérrez, M.S., Vivancos, J., Nombela, F., Torres, M., Burguete, M.C., Manzanares, J., Lizasoain, I., et al.. (2012). Cannabinoid type 2 receptor activation downregulates stroke-induced classic and alternative brain macrophage/microglial activation concomitant to neuroprotection. Stroke 43: 211–219, https://doi.org/10.1161/strokeaha.111.631044.
Zhang, H.-Y., Gao, M., Liu, Q.-R., Bi, G.-H., Li, X., Yang, H.-J., Gardner, E.L., Wu, J., and Xi, Z.-X. (2014). Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice. Proc. Natl. Acad. Sci. U.S.A. 111: E5007, https://doi.org/10.1073/pnas.1413210111.
فهرسة مساهمة: Keywords: adult neurogenesis; cannabinoids; endocannabinoid system; hippocampal Cb2 receptors; hippocampus; memory
المشرفين على المادة: 0 (Cannabinoids)
0 (Endocannabinoids)
تواريخ الأحداث: Date Created: 20211030 Date Completed: 20220602 Latest Revision: 20220712
رمز التحديث: 20231215
DOI: 10.1515/revneuro-2021-0109
PMID: 34717053
قاعدة البيانات: MEDLINE
الوصف
تدمد:2191-0200
DOI:10.1515/revneuro-2021-0109