دورية أكاديمية

The rating of perceived exertion is able to differentiate the post-matches metabolomic profile of elite U-20 soccer players.

التفاصيل البيبلوغرافية
العنوان: The rating of perceived exertion is able to differentiate the post-matches metabolomic profile of elite U-20 soccer players.
المؤلفون: Marinho AH; Laboratory of Applied Sports Science, Institute of Physical Education and Sports, Federal University of Alagoas, Avenue Lourival Melo Mota, s/n, Maceió, AL, 57072-900, Brazil.; Postgraduate Nutrition Program - PPGNUT, Faculty of Nutrition, Federal University of Alagoas, Maceió, Brazil., Sousa FAB; Laboratory of Applied Sports Science, Institute of Physical Education and Sports, Federal University of Alagoas, Avenue Lourival Melo Mota, s/n, Maceió, AL, 57072-900, Brazil.; Postgraduate Nutrition Program - PPGNUT, Faculty of Nutrition, Federal University of Alagoas, Maceió, Brazil., Vilela RAMP; Laboratory of Applied Sports Science, Institute of Physical Education and Sports, Federal University of Alagoas, Avenue Lourival Melo Mota, s/n, Maceió, AL, 57072-900, Brazil., Balikian P Jr; Laboratory of Applied Sports Science, Institute of Physical Education and Sports, Federal University of Alagoas, Avenue Lourival Melo Mota, s/n, Maceió, AL, 57072-900, Brazil., de Souza Bento E; Laboratory of Nuclear Magnetic Resonance, Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió, Brazil., de Mendonça Aquino T; Laboratory of Nuclear Magnetic Resonance, Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió, Brazil., Crispim A; Laboratory of Nuclear Magnetic Resonance, Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió, Brazil., Ataide-Silva T; Faculty of Nutrition, Federal University of Alagoas, Maceió, Brazil.; Postgraduate Nutrition Program - PPGNUT, Faculty of Nutrition, Federal University of Alagoas, Maceió, Brazil., de Araujo GG; Laboratory of Applied Sports Science, Institute of Physical Education and Sports, Federal University of Alagoas, Avenue Lourival Melo Mota, s/n, Maceió, AL, 57072-900, Brazil. gusta_ef@yahoo.com.br.; Postgraduate Nutrition Program - PPGNUT, Faculty of Nutrition, Federal University of Alagoas, Maceió, Brazil. gusta_ef@yahoo.com.br.; Postgraduate Program in Health Sciences - PPGCS, Federal University of Alagoas, Maceió, Brazil. gusta_ef@yahoo.com.br.
المصدر: European journal of applied physiology [Eur J Appl Physiol] 2022 Feb; Vol. 122 (2), pp. 371-382. Date of Electronic Publication: 2021 Nov 05.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 100954790 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1439-6327 (Electronic) Linking ISSN: 14396319 NLM ISO Abbreviation: Eur J Appl Physiol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin ; New York : Springer-Verlag, c2000-
مواضيع طبية MeSH: Metabolomics*, Athletic Performance/*physiology , Physical Exertion/*physiology , Soccer/*physiology, Biomarkers/urine ; Brazil ; Humans ; Male ; Young Adult
مستخلص: Purpose: The study aimed to assess the metabolic impact of elite Brazilian U-20 players using the rating of perceived exertion scale (RPE) to discriminate metabolomics sensitivity post-two soccer games separated by a short recovery interval.
Methods: Urine was collected immediately and then 20 h after two soccer matches of elite Brazilian U-20 players. RPE was collected after games. The spectra were pre-processed using TopSpin ® 3.2 software. Chenomx ® software was used to identify metabolites in the urine through the available database.
Results: The results showed that the metabolic pathways related to energy production, cellular damage, and organic stresses were changed immediately after the game. 20 h after the games, antioxidant and anti-inflammatory pathways related to cell recovery were identified (e.g., gallic acid, ascorbate, and betaine). The matrix of positive correlations between metabolites was more predominant and stronger after game 2 than game 1. T-distribution registered metabolites discriminated below and above 7 on the RPE scale. Athletes with higher RPE values showed a high metabolite profile related to muscle damage (e.g., creatine, creatinine, and glycine) and energy production (e.g., creatine, formate, pyruvate, 1,3 dihydroxyacetone) 20 h post-soccer match. There was a different metabolic profile between athletes with higher and lower RPE values.
Conclusion: Metabolomics analysis made it possible to observe the metabolic impacts of energy production and muscular damage. RPE identified internal load changes within the group as a result of match intensity in soccer. The correlation matrix indicated a greater predominance of positive and strong correlations between metabolites in the second game compared to the first game.
(© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Armstrong L, Maresh CM, Castellani JW, Bergeron MF, Kenefick RW, LaGasse KE, Riebe D (1994) Urinary indices of hydration status. Int J Sport Nutr 4:265–279. (PMID: 10.1123/ijsn.4.3.265)
Bangsbo J (1996) Yo-Yo Test Ancona Kells.
Bezrati-Benayed I, Nasrallah F, Feki M, Chamari K, Omar S, Alouane-Trabelsi L, Ben Mansour A, Kaabachi N (2014) Urinary creatine at rest and after repeated sprints in athletes: a pilot study. Biol Sport 31(1):49–54. https://doi.org/10.5604/20831862.1086732. (PMID: 10.5604/20831862.1086732249176893994585)
Bongiovanni T, Dessì A, Noto A, Sardo S, Finco G, Corsello G, Fanos V, Pintus R (2019) Sportomics: metabolomics applied to sports. The new revolution? Eur Rev Med Pharmacol Sci 23(24):11011–11019. https://doi.org/10.26355/eurrev_201912_19807. (PMID: 10.26355/eurrev_201912_1980731858572)
Butts J, Jacobs B, Silvis M (2018) Creatine use in sports. Sports Health 10(1):31–34. https://doi.org/10.1177/1941738117737248. (PMID: 10.1177/194173811773724829059531)
Castagna C, Manzi V, Impellizzeri F, Weston M, Carlos J (2010) Relationship between endurance field tests and match performance in young soccer players. J Strength Cond Res 24(12):3227–3233. (PMID: 10.1519/JSC.0b013e3181e72709)
Coutts AJ, Reaburn P, Piva TJ, Rowsell GJ (2007) Monitoring for overreaching in rugby league players. Eur J Appl Physiol 99(3):313–324. https://doi.org/10.1007/s00421-006-0345-z. (PMID: 10.1007/s00421-006-0345-z17219174)
Coutts AJ, Rampinini E, Marcora SM, Castagna C, Impellizzeri FM (2009) Heart rate and blood lactate correlates of perceived exertion during small-sided soccer games. J Sci Med Sport 12(1):79–84. https://doi.org/10.1016/j.jsams.2007.08.005. (PMID: 10.1016/j.jsams.2007.08.00518068433)
Faude O, Kindermann W, Meyer T (2009) Lactate threshold concepts: how valid are they? Sports Med 39(6):469–490. https://doi.org/10.2165/00007256-200939060-00003. (PMID: 10.2165/00007256-200939060-0000319453206)
Foster C, Florhaug JA, Franklin J, Gottschall L, Hrovatin LA, Parker S, Doleshal P, Dodge C (2001) A new approach to monitoring exercise training. J Strength Cond Res 15(1):109–115. https://doi.org/10.1016/0968-0896(95)00066-P. (PMID: 10.1016/0968-0896(95)00066-P11708692)
Gomes CPC, Almeida JA, Franco OL, Petriz B (2020) Omics and the molecular exercise physiology. In: Advances in clinical chemistry, 1st edn., vol 96. Elsevier Inc. https://doi.org/10.1016/bs.acc.2019.11.003.
Hargreaves M, Spriet LL (2020) Skeletal muscle energy metabolism during exercise. Nat Metab 2(9):817–828. https://doi.org/10.1038/s42255-020-0251-4. (PMID: 10.1038/s42255-020-0251-432747792)
Harper DJ, Carling C, Kiely J (2019) High-intensity acceleration and deceleration demands in elite team sports competitive match play: a systematic review and meta-analysis of observational studies. Sports Med 49(12):1923–1947. https://doi.org/10.1007/s40279-019-01170-1. (PMID: 10.1007/s40279-019-01170-1315069016851047)
Heaney LM, Deighton K, Suzuki T, Heaney LM, Deighton K (2017) Non-targeted metabolomics in sport and exercise science. J Sports Sci 00(00):1–9. https://doi.org/10.1080/02640414.2017.1305122. (PMID: 10.1080/02640414.2017.1305122)
Hoffman JR, Ratamess NA, Kang J, Rashti SL, Faigenbaum AD (2009) Effect of betaine supplementation on power performance and fatigue. J Int Soc Sports Nutr 6:1–10. https://doi.org/10.1186/1550-2783-6-7. (PMID: 10.1186/1550-2783-6-7191262122621121)
Impellizzeri FM, Rampinini E, Coutts AJ, Sassi A, Marcora SM (2004) Use of RPE-based training load in soccer. Med Sci Sports Exerc 36(6):1042–1047. https://doi.org/10.1249/01.MSS.0000128199.23901.2F. (PMID: 10.1249/01.MSS.0000128199.23901.2F15179175)
Impellizzeri FM, Marcora SM, Castagna C, Reilly T, Sassi A, Iaia FM, Rampinini E (2006) Physiological and performance effects of generic versus specific aerobic training in soccer players. Int J Sports Med 27(6):483–492. https://doi.org/10.1055/s-2005-865839. (PMID: 10.1055/s-2005-86583916767613)
Jamnick NA, Pettitt RW, Granata C, Pyne DB, Bishop DJ (2020) An examination and critique of current methods to determine exercise intensity. Sports Med 0123456789:1–28. https://doi.org/10.1007/s40279-020-01322-8. (PMID: 10.1007/s40279-020-01322-8)
Jang HJ, Lee JD, Jeon HS, Kim AR, Kim S, Lee HS, Kim KB (2018) Metabolic profiling of eccentric exercise-induced muscle damage in human urine. Toxicol Res 34(3):199–210. https://doi.org/10.5487/TR.2018.34.3.199. (PMID: 10.5487/TR.2018.34.3.199300576946057290)
Lago-Penas C, Casais L, Dellal A, Rey E, Domínguez E (2011) Anthropometric and physiological characteristics of young soccer players according to their playing positions: relevance for competition success. J Strength Cond Res 15(12):3358–3367. (PMID: 10.1519/JSC.0b013e318216305d)
Lemieux R, Purves C (1947) Quantitative estimation as acetic acid of acetyl, ethylidene, ethoxy, and a-hydroxyethyl groups. Can J Res 25(5):485–489. (PMID: 10.1139/cjr47b-057)
Lewis GD, Farrell L, Wood MJ, Martinovic M, Arany Z, Rowe GC, Souza A, Cheng S, Mccabe EL, Yang E, Shi X, Deo R, Roth FP, Asnani A, Rhee EP, Systrom DM, Semigran MJ, Vasan RS, Carr SA et al (2010) Metabolic signatures of exercise in human plasma. Sci Transl Med 2(33):33–37. (PMID: 10.1126/scitranslmed.3001006)
Micklewright D, St Clair Gibson A, Gladwell V, Al Salman A (2017) Development and validity of the rating-of-fatigue scale. Sports Med 47:2375. (PMID: 10.1007/s40279-017-0711-5)
Neal CM, Hunter AM, Brennan L, O’Sullivan A, Hamilton DL, DeVito G, Galloway SDR (2013) Six weeks of a polarized training-intensity distribution leads to greater physiological and performance adaptations than a threshold model in trained cyclists. J Appl Physiol 114(4):461–471. https://doi.org/10.1152/japplphysiol.00652.2012. (PMID: 10.1152/japplphysiol.00652.201223264537)
Nieman DC, Gillitt ND, Knab AM, Shanely RA, Pappan KL, Jin F, Lila MA (2013) Influence of a polyphenol-enriched protein powder on exercise-induced inflammation and oxidative stress in athletes: a randomized trial using a metabolomics approach. PLoS ONE 8(8):e72215. https://doi.org/10.1371/journal.pone.0072215. (PMID: 10.1371/journal.pone.0072215239672863744465)
Pechlivanis A, Papaioannou KG, Tsalis G, Saraslanidis P, Mougios V, Theodoridis GA (2015) Monitoring the response of the human urinary metabolome to brief maximal exercise by a combination of RP-UPLC-MS and 1H NMR spectroscopy. J Proteome Res 14(11):4610–4622. https://doi.org/10.1021/acs.jproteome.5b00470. (PMID: 10.1021/acs.jproteome.5b0047026419189)
Pintus R, Bongiovanni T, Corbu S, Francavilla VC, Dessì A, Noto A, Corsello G, Finco G, Fanos V, Marincola FC (2020) Sportomics in professional soccer players: metabolomics results during preseason. J Sports Med Phys Fitness. https://doi.org/10.23736/S0022-4707.20.11200-3. (PMID: 10.23736/S0022-4707.20.11200-332936572)
Prado E, Souza GHMF, Pegurier M, Vieira C, Lima-Neto ABM, Assis M, Guedes MIF, Koblitz MGB, Ferreira MSL, Macedo AF, Bottino A, Bassini A, Cameron LC (2017) Non-targeted sportomics analyses by mass spectrometry to understand exercise-induced metabolic stress in soccer players. Int J Mass Spectrom 418:1–5. https://doi.org/10.1016/j.ijms.2017.02.002. (PMID: 10.1016/j.ijms.2017.02.002)
Quintas G, Reche X, Sanjuan-Herráez JD, Martínez H, Herrero M, Valle X, Masa M, Rodas G (2020) Urine metabolomic analysis for monitoring internal load in professional football players. Metabolomics 16(4):1–11. https://doi.org/10.1007/s11306-020-01668-0. (PMID: 10.1007/s11306-020-01668-0)
Ra SG, Maeda S, Higashino R, Imai T, Miyakawa S (2014) Metabolomics of salivary fatigue markers in soccer players after consecutive games. Appl Physiol Nutr Metab 39(10):1120–1126. https://doi.org/10.1139/apnm-2013-0546. (PMID: 10.1139/apnm-2013-054624988119)
Sakaguchi CA, Nieman DC, Signini EF, Abreu RM, Catai AM (2019) Metabolomics-based studies assessing exercise-induced alterations of the human metabolome: a systematic review. Metabolites 9(8):164. https://doi.org/10.3390/metabo9080164. (PMID: 10.3390/metabo90801646724094)
Schranner D, Kastenmüller G, Schönfelder M, Römisch-Margl W, Wackerhage H (2020) Metabolite concentration changes in humans after a bout of exercise: a systematic review of exercise metabolomics studies. Sports Med - Open 6(1):11. https://doi.org/10.1186/s40798-020-0238-4. (PMID: 10.1186/s40798-020-0238-4320407827010904)
Seiler KS, Kjerland GØ (2006) Quantifying training intensity distribution in elite endurance athletes: Is there evidence for an “optimal” distribution? Scand J Med Sci Sports 16(1):49–56. https://doi.org/10.1111/j.1600-0838.2004.00418.x. (PMID: 10.1111/j.1600-0838.2004.00418.x16430681)
Silva JR, Rumpf MC, Hertzog M, Castagna C, Farooq A, Girard O, Hader K (2018) Acute and residual soccer match-related fatigue: a systematic review and meta-analysis. Sports Med 48(3):539–583. https://doi.org/10.1007/s40279-017-0798-8. (PMID: 10.1007/s40279-017-0798-829098658)
Simpson GLW, Ortwerth BJ (2000) The non-oxidative degradation of ascorbic acid at physiological conditions. Biochim Biophys Acta Mol Basis Dis 1501(1):12–24. https://doi.org/10.1016/S0925-4439(00)00009-0. (PMID: 10.1016/S0925-4439(00)00009-0)
Stander Z, Luies L, Mienie LJ, Keane KM, Howatson G, Clifford T, Stevenson EJ, Toit D (2018) The altered human serum metabolome induced by a marathon. Metabolomics 14(11):150. https://doi.org/10.1007/s11306-018-1447-4. (PMID: 10.1007/s11306-018-1447-430830390)
StØlen T, Chamari K, Castagna C, WislØff U (2005) Physiology of soccer. Sports Med 35(6):501–536. (PMID: 10.2165/00007256-200535060-00004)
Sun T, Wu Y, Wu X, Ma H (2017) Metabolomic profiles investigation on athletes’ urine 35 minutes after an 800-meter race. J Sports Med Phys Fitness 57(6):839–849. https://doi.org/10.23736/S0022-4707.17.06254-5. (PMID: 10.23736/S0022-4707.17.06254-526699119)
Zhang J, Cui Z, Chang H, Fan X, Zhao Q, Wei W (2016) Conversion of glycerol to 1,3-dihydroxyacetone by glycerol dehydrogenase co-expressed with an NADH oxidase for cofactor regeneration. Biotechnol Lett 38(9):1559–1564. https://doi.org/10.1007/s10529-016-2130-3. (PMID: 10.1007/s10529-016-2130-327233513)
فهرسة مساهمة: Keywords: Exercise biochemistry; Metabolism; Metabolomics; Sportomics
المشرفين على المادة: 0 (Biomarkers)
تواريخ الأحداث: Date Created: 20211105 Date Completed: 20220314 Latest Revision: 20220314
رمز التحديث: 20231215
DOI: 10.1007/s00421-021-04838-7
PMID: 34739602
قاعدة البيانات: MEDLINE
الوصف
تدمد:1439-6327
DOI:10.1007/s00421-021-04838-7