دورية أكاديمية

A Machine Learning Approach for Predicting Real-time Risk of Intraoperative Hypotension in Traumatic Brain Injury.

التفاصيل البيبلوغرافية
العنوان: A Machine Learning Approach for Predicting Real-time Risk of Intraoperative Hypotension in Traumatic Brain Injury.
المؤلفون: Feld SI; Anesthesiology and Pain Medicine, University of Washington., Hippe DS; The Mountain-Whisper-Light: Statistics & Data Science, Seattle, WA., Miljacic L; The Mountain-Whisper-Light: Statistics & Data Science, Seattle, WA., Polissar NL; The Mountain-Whisper-Light: Statistics & Data Science, Seattle, WA., Newman SF; Anesthesiology and Pain Medicine, University of Washington., Nair BG; Anesthesiology and Pain Medicine, University of Washington., Vavilala MS; Anesthesiology and Pain Medicine, University of Washington.
المصدر: Journal of neurosurgical anesthesiology [J Neurosurg Anesthesiol] 2023 Apr 01; Vol. 35 (2), pp. 215-223. Date of Electronic Publication: 2021 Nov 11.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Lippincott Williams & Wilkins Country of Publication: United States NLM ID: 8910749 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1537-1921 (Electronic) Linking ISSN: 08984921 NLM ISO Abbreviation: J Neurosurg Anesthesiol Subsets: MEDLINE
أسماء مطبوعة: Publication: Hagerstown, MD : Lippincott Williams & Wilkins
Original Publication: [New York, N.Y.] : Raven Press, [c1989-
مواضيع طبية MeSH: Hypotension*/diagnosis , Hypotension*/etiology , Hypotension*/epidemiology , Brain Injuries, Traumatic*/complications , Brain Injuries, Traumatic*/surgery, Humans ; Machine Learning ; Arterial Pressure ; ROC Curve
مستخلص: Background: Traumatic brain injury (TBI) is a major cause of death and disability. Episodes of hypotension are associated with worse TBI outcomes. Our aim was to model the real-time risk of intraoperative hypotension in TBI patients, compare machine learning and traditional modeling techniques, and identify key contributory features from the patient monitor and medical record for the prediction of intraoperative hypotension.
Methods: The data included neurosurgical procedures in 1005 TBI patients at an academic level 1 trauma center. The clinical event was intraoperative hypotension, defined as mean arterial pressure <65 mm Hg for 5 or more consecutive minutes. Two types of models were developed: one based on preoperative patient-level predictors and one based on intraoperative predictors measured per minute. For each of these models, we took 2 approaches to predict the occurrence of a hypotensive event: a logistic regression model and a gradient boosting tree model.
Results: The area under the receiver operating characteristic curve for the intraoperative logistic regression model was 0.80 (95% confidence interval [CI]: 0.78-0.83), and for the gradient boosting model was 0.83 (95% CI: 0.81-0.85). The area under the precision-recall curve for the intraoperative logistic regression model was 0.16 (95% CI: 0.12-0.20), and for the gradient boosting model was 0.19 (95% CI: 0.14-0.24). Model performance based on preoperative predictors was poor. Features derived from the recent trend of mean arterial pressure emerged as dominantly predictive in both intraoperative models.
Conclusions: This study developed a model for real-time prediction of intraoperative hypotension in TBI patients, which can use computationally efficient machine learning techniques and a streamlined feature-set derived from patient monitor data.
Competing Interests: Unrelated to this study, B.G.N. holds equity in Perimatics LLC and is its Chief Solution Architect. D.S.H. reports research grants from GE Healthcare, Philips Healthcare, Canon America Medical Systems, and Siemens Healthineers, outside this study. The remaining authors have no conflicts of interest to declare.
(Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.)
References: Peterson A. Surveillance Report of Traumatic Brain Injury-related Emergency Department Visits, Hospitalizations, and Deaths-United States, 2014. US Department of Health and Human Services. Centers for Disease Control and Prevention (CDC); 2019:24. Available at: www.cdc.gov/TraumaticBrainInjury . Accessed April 5, 2021.
Maas AIR, Menon DK, Steyerberg EW, et al. Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI): a prospective longitudinal observational study. Neurosurgery. 2014;76:67–80. doi:10.1227/NEU.0000000000000575. (PMID: 10.1227/NEU.0000000000000575)
Carney N, Totten AM, O’Reilly C, et al. Guidelines for the Management of Severe Traumatic Brain Injury, Fourth Edition. Neurosurgery. 2017;80:6–15. doi:10.1227/NEU.0000000000001432. (PMID: 10.1227/NEU.0000000000001432)
Chesnut RM, Temkin N, Carney N, et al. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med. 2012;367:2471–2481. doi:10.1056/NEJMoa1207363. (PMID: 10.1056/NEJMoa1207363)
Algarra NN, Lele AV, Prathep S, et al. Intraoperative secondary insults during orthopedic surgery in traumatic brain injury. J Neurosurg Anesthesiol. 2017;29:228–235. doi:10.1097/ANA.0000000000000292. (PMID: 10.1097/ANA.0000000000000292)
Sharma D, Brown MJ, Curry P, et al. Prevalence and risk factors for intraoperative hypotension during craniotomy for traumatic brain injury. J Neurosurg Anesthesiol. 2012;24:178–184. doi:10.1097/ANA.0b013e318254fb70. (PMID: 10.1097/ANA.0b013e318254fb70)
Chesnut RM, Marshall LF, Klauber MR, et al. The role of secondary brain injury in determining outcome from severe head injury. J Trauma. 1993;34:216–222. doi:10.1097/00005373-199302000-00006. (PMID: 10.1097/00005373-199302000-00006)
Chesnut RM, Marshall SB, Piek J, et al. Early and late systemic hypotension as a frequent and fundamental source of cerebral ischemia following severe brain injury in the Traumatic Coma Data Bank. Acta Neurochir Suppl (Wien). 1993;59:121–125. doi:10.1007/978-3-7091-9302-0_21. (PMID: 10.1007/978-3-7091-9302-0_21)
Lingsma HF, Roozenbeek B, Steyerberg EW, et al. Early prognosis in traumatic brain injury: from prophecies to predictions. Lancet Neurol. 2010;9:543–554. doi:10.1016/S1474-4422(10)70065-X. (PMID: 10.1016/S1474-4422(10)70065-X)
Deo RC. Machine learning in medicine. Circulation. 2015;132:1920–1930. doi:10.1161/CIRCULATIONAHA.115.001593. (PMID: 10.1161/CIRCULATIONAHA.115.001593)
Agoston D, Langford D. Big data in traumatic brain injury; promise and challenges. Concussion. 2017;2:CNC45. doi:10.2217/cnc-2016-0013. (PMID: 10.2217/cnc-2016-0013)
Huie JR, Almeida CA, Ferguson AR. Neurotrauma as a big-data problem. Curr Opin Neurol. 2018;31:702–708. doi:10.1097/WCO.0000000000000614. (PMID: 10.1097/WCO.0000000000000614)
Matsuo K, Aihara H, Nakai T, et al. Machine learning to predict in-hospital morbidity and mortality after traumatic brain injury. J Neurotrauma. 2020;37:202–210. doi:10.1089/neu.2018.6276. (PMID: 10.1089/neu.2018.6276)
Rau C, Kuo P, Chien P, et al. Mortality prediction in patients with isolated moderate and severe traumatic brain injury using machine learning models. PLoS ONE. 2018;13:e0207192. doi:10.1371/journal.pone.0207192. (PMID: 10.1371/journal.pone.0207192)
Raj R, Luostarinen T, Pursiainen E, et al. Machine learning-based dynamic mortality prediction after traumatic brain injury. Sci Rep. 2019;9:1–13. doi:10.1038/s41598-019-53889-6. (PMID: 10.1038/s41598-019-53889-6)
Hale AT, Stonko DP, Brown A, et al. Machine-learning analysis outperforms conventional statistical models and CT classification systems in predicting 6-month outcomes in pediatric patients sustaining traumatic brain injury. Neurosurg Focus. 2018;45:E2. doi:10.3171/2018.8.FOCUS17773. (PMID: 10.3171/2018.8.FOCUS17773)
Hale AT, Stonko DP, Lim J, et al. Using an artificial neural network to predict traumatic brain injury. J Neurosurg Pediatr. 2019;23:219–226. doi:10.3171/2018.8.PEDS18370. (PMID: 10.3171/2018.8.PEDS18370)
Myers RB, Lazaridis C, Jermaine CM, et al. Predicting intracranial pressure and brain tissue oxygen crises in patients with severe traumatic brain injury. Crit Care Med. 2016;44:1754–1761. doi:10.1097/CCM.0000000000001838. (PMID: 10.1097/CCM.0000000000001838)
Lazaridis C, Rusin CG, Robertson CS. Secondary brain injury: predicting and preventing insults. Neuropharmacology. 2019;145(pt B):145–152. doi:10.1016/j.neuropharm.2018.06.005. (PMID: 10.1016/j.neuropharm.2018.06.005)
Güiza F, Depreitere B, Piper I, et al. Novel methods to predict increased intracranial pressure during intensive care and long-term neurologic outcome after traumatic brain injury: development and validation in a multicenter dataset. Crit Care Med. 2013;41:554–564. doi:10.1097/CCM.0b013e3182742d0a. (PMID: 10.1097/CCM.0b013e3182742d0a)
Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD Statement. BMC Med. 2015;13:1–10. doi:10.1136/bmj.g7594. (PMID: 10.1136/bmj.g7594)
Lundberg SM, Nair B, Vavilala MS, et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat Biomed Eng. 2018;2:749–760. doi:10.1038/s41551-018-0304-0. (PMID: 10.1038/s41551-018-0304-0)
Ghosh S, Feng M, Nguyen H, et al. Hypotension risk prediction via sequential contrast patterns of ICU blood pressure. IEEE J Biomed Health Inform. 2016;20:1416–1426. doi:10.1109/JBHI.2015.2453478. (PMID: 10.1109/JBHI.2015.2453478)
Moody G, Lehman L. Predicting acute hypotensive episodes: The 10th Annual PhysioNet/Computers in Cardiology Challenge. Comput Cardiol. 2009;36:541–544.
Davies SJ, Vistisen ST, Jian Z, et al. Ability of an arterial waveform analysis-derived hypotension prediction index to predict future hypotensive events in surgical patients. Anesth Analg. 2020;130:352–359. doi:10.1213/ANE.0000000000004121. (PMID: 10.1213/ANE.0000000000004121)
Hatib F, Jian Z, Buddi S, et al. Machine-learning algorithm to predict hypotension based on high-fidelity arterial pressure waveform analysis. Anesthesiology. 2018;129:663–674. doi:10.1097/ALN.0000000000002300. (PMID: 10.1097/ALN.0000000000002300)
Bonds BW, Yang S, Hu PF, et al. Predicting secondary insults after severe traumatic brain injury. J Trauma Acute Care Surg. 2015;79:85–90. discussion 90. doi:10.1097/TA.0000000000000698. (PMID: 10.1097/TA.0000000000000698)
Donald R, Howells T, Piper I, et al. Forewarning of hypotensive events using a Bayesian artificial neural network in neurocritical care. J Clin Monit Comput. 2019;33:39–51. doi:10.1007/s10877-018-0139-y. (PMID: 10.1007/s10877-018-0139-y)
Solomon SC, Saxena RC, Neradilek MB, et al. Forecasting a crisis: machine-learning models predict occurrence of intraoperative bradycardia associated with hypotension. Anesth Analg. 2020;130:1201–1210. doi:10.1213/ANE.0000000000004636. (PMID: 10.1213/ANE.0000000000004636)
Krishnamoorthy V, Rowhani-Rahbar A, Chaikittisilpa N, et al. Association of early hemodynamic profile and the development of systolic dysfunction following traumatic brain injury. Neurocrit Care. 2017;26:379–387. doi:10.1007/s12028-016-0335-x. (PMID: 10.1007/s12028-016-0335-x)
معلومات مُعتمدة: R21 LM012922 United States LM NLM NIH HHS
تواريخ الأحداث: Date Created: 20211111 Date Completed: 20230308 Latest Revision: 20240402
رمز التحديث: 20240402
مُعرف محوري في PubMed: PMC9091057
DOI: 10.1097/ANA.0000000000000819
PMID: 34759236
قاعدة البيانات: MEDLINE
الوصف
تدمد:1537-1921
DOI:10.1097/ANA.0000000000000819