دورية أكاديمية

Tolerance of Hymenaea courbaril L. to glyphosate.

التفاصيل البيبلوغرافية
العنوان: Tolerance of Hymenaea courbaril L. to glyphosate.
المؤلفون: de Faria GS; Programa de Pós-Graduação em Ciências Agrárias, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil., Carlos L; Programa de Pós-Graduação em Ciências Agrárias, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil. lcmaestro@gmail.com., Jakelaitis A; Programa de Pós-Graduação em Ciências Agrárias, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil., Filho SCV; Programa de Pós-Graduação em Biodiversidade e Conservação, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil., Lourenço LL; Programa de Pós-Graduação em Biotecnologia em Biodiversidade e Conservação, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil., da Costa AM; Programa de Pós-Graduação em Ciências Agrárias, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil., Gonçalves IA; Laboratório de anatomia vegetal, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil.
المصدر: Ecotoxicology (London, England) [Ecotoxicology] 2022 Jan; Vol. 31 (1), pp. 168-177. Date of Electronic Publication: 2021 Nov 13.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic Publishers Country of Publication: United States NLM ID: 9885956 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-3017 (Electronic) Linking ISSN: 09639292 NLM ISO Abbreviation: Ecotoxicology Subsets: MEDLINE
أسماء مطبوعة: Publication: 1999- : Boston : Kluwer Academic Publishers
Original Publication: London : Chapman & Hall,
مواضيع طبية MeSH: Glycine*/analogs & derivatives , Glycine*/toxicity , Hymenaea*, Herbicides/toxicity ; Photosynthesis ; Glyphosate
مستخلص: The objective was to evaluate the effect of the glyphosate on Hymenaea courbaril L. A randomized block design with five replications was implemented. Each experimental unit was composed of one plant in a 5 L container. The treatments were 0 "control"; 96; 240; 480; and 960 g ha-1 "corresponding to 10, 25, 50, and 100% of the commercial dose of glyphosate recommended for Caryocar brasiliense crop, respectively". The evaluations were performed at 24 h and 60 days after application. Visual and anatomical evaluations did not change regardless of the dose, while the histochemical evaluation showed an accumulation of starch grains in leaf tissues. There was an increase in the photosynthetic rate, in the electron transport rate, and in the effective quantum yield of photosystem II at 24 h after application. At 60 days after the application of the treatments, the photosynthetic rate showed a slight decrease and the transpiratory rate showed quadratic behavior. An increase in plant height was observed up to the dose of 480 g ha-1, a linear increase in stem diameter and a decrease in the number of leaves with increasing glyphosate doses. These results show that the cuticle protected the plant, and that the little absorbed glyphosate increased photosynthesis and transpiration to favor the plants. We can conclude that the H. courbaril species is able to survive after contact with glyphosate during the evaluated time, with no visual and/or anatomical damage, showing increases in growth and physiological characteristics for the tested doses.
(© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Abraham W (2010) Glyphosate formulations and their use for the inhibition of 5-enolpyruvylshikimate-3-phosphate synthase. In: US Patent No. 7,771,736.
Agathokleous E, Kitao M, Calabrese EJ (2019) Hormesis: a compelling platform for sophisticated plant science. Trends Plant Sci 24(4):318–327. https://doi.org/10.1016/j.tplants.2019.01.004. (PMID: 10.1016/j.tplants.2019.01.004)
Agathokleous E, Feng Z, Peñuelas J (2020) Chlorophyll hormesis: are chlorophylls major components of stress biology in higher plants? Sci Total Environ 726:138637. https://doi.org/10.1016/j.scitotenv.2020.138637. (PMID: 10.1016/j.scitotenv.2020.138637)
Alves RM, Inacio EM, Monquero PA, Meneghin SP, Hirata A (2014) Leaf-surface characterization and the effects of the herbicide saflufenacil on the leaves of weeds. Brazilian J Agric Sci/Revista Brasileira de Ciências Agrárias 9:4.
Arango L, Buddrus-Schiemann K, Opelt K, Lueders T, Haesler F, Schmid M, Ernst D, Hartmann A (2014) Efects of glyphosate on the bacterial community associated with roots of transgenic Roundup Ready® soybean. Eur J Soil Biol 63:41–48. https://doi.org/10.1016/j.ejsobi.2014.05.005. (PMID: 10.1016/j.ejsobi.2014.05.005)
Araya T, Noguchi K, Terashima I (2006) Effects of carbohydrate accumulation on photosynthesis differ between sink and souSCe leaves of Phaseolus vulgaris L. Plant Cell Physiol 47(5):644–652. https://doi.org/10.1093/pcp/pcj033. (PMID: 10.1093/pcp/pcj033)
Belz RG, Duke SO (2017) Herbicide-mediated hormesis. In Pesticide dose: effects on the environment and target and non-target organisms (pp. 135-148) American Chemical Society.
Bilger W, Schreiber U, Bock M (1995) Determination of the quantum efficiency of photosystem II and of non-photochemical quenching of chlorophyll fluorescence in the field. Oecologia 102:425–432. https://doi.org/10.1007/BF00341354. (PMID: 10.1007/BF00341354)
BRAZIL. Law No. 12,651, of May 25 (2012) Provides for the protection of native vegetation. Official Diary of the Union, Brasilia, May 26 2012.
Brito IP, Tropaldi L, Carbonari CA, Velini ED (2018) Hormetic effects of glyphosate on plants. Pest Manag Sci 74(5):1064–1070. https://doi.org/10.1002/ps.4523. (PMID: 10.1002/ps.4523)
Carrillo JAO, Cruz MCR, Ibañez EMA, Narcía AT, Galvez GH, López MRM (2019) Hormesis under oil-induced stress in Leersia hexandra Sw. used as phytoremediator in clay soils of the Mexican humid tropic. Ecotoxicology 28(9):1063–1074. https://doi.org/10.1007/s10646-019-02106-1. (PMID: 10.1007/s10646-019-02106-1)
Carvalho AMD, Mendes ANG, Carvalho GR, Botelho CE, Gonçalves FMA, Ferreira AD (2010) Correlation between growth and yield of coffee cultivars in different regions of the state of Minas Gerais, Brazil. Pesquisa Agropecuária Brasileira 45(3):269–275. https://doi.org/10.1590/S0100-204X2010000300006. (PMID: 10.1590/S0100-204X2010000300006)
Chłopecka M, Mendel M, Dziekan N, Karlik W (2014) Glyphosate afects the spontaneous motoric activity of intestine at very low doses. In vitro study. Pestic Biochem Physiol 113:25–30. https://doi.org/10.1016/j.pestbp.2014.06.005. (PMID: 10.1016/j.pestbp.2014.06.005)
Costa NV, Erasmo EAL, Queiroz PA, Dornelas DF, Dornelas BF (2009) Effect of simulated glyphosate drift on the initial growth of physic nut plants. Planta Daninha 27:1105–1110. https://doi.org/10.1590/S0100-83582009000500024. (PMID: 10.1590/S0100-83582009000500024)
Costa NV, Martins D, Rodella RA, Rodrigues-Costa ACP (2011) Anatomical leaf changes in Eichhornia crassipes due to herbicides application. Planta Daninha 29(1):17–23. https://doi.org/10.1590/S0100-83582011000100003. (PMID: 10.1590/S0100-83582011000100003)
Costa EM, Zuchi J, Ventura MVA, Pereira LS, Caetano GB, Jakelaitis A (2020) Simulated drift of dicamba: effect on the physiological quality of soybean seeds. J Seed Sci 42. https://doi.org/10.1590/2317-1545v42224236.
Constantin J, Oliveira Jr RS, Fagliari JR, Pagliari PH, Arantes JGZ, Cavalieri SD, Framesqui VP, Gonçalves DA (2007) Efeito de subdoses de 2,4-D na produtividade do algodão e suscetibilidade da cultura em função de seu estádio de desenvolvimento. Eng Agríc Jaboticabal 27:24–29. https://doi.org/10.1590/S0100-69162007000200004. (PMID: 10.1590/S0100-69162007000200004)
Correia NM, Rampazzo PE, Araújo LDS, Rossi CVS (2020) Sensitivity of Digitaria insularis to herbicides in agricultural areas, in the Brazilian Cerrado biome. Pesquisa Agropecuária Brasileira, 55. https://doi.org/10.1590/s1678-3921.pab2020.v55.01570.
Cruz, CES, de Freitas-Silva, L, Ribeiro, C, & da Silva, LC (2021) Physiological and morphoanatomical effects of glyphosate in Eugenia uniflora, a Brazilian plant species native to the Atlantic Forest biome. Environ Sci Pollut Res 1–13. https://doi.org/10.1007/s11356-020-12003-4.
Daam MA, Moutinho MF, Espíndola EL, Schiesari L (2019) Lethal toxicity of the herbicides acetochlor, ametryn, glyphosate and metribuzin to tropical frog larvae. Ecotoxicology 28(6):707–715. https://doi.org/10.1007/s10646-019-02067-5. (PMID: 10.1007/s10646-019-02067-5)
Delarmelina WM, Caldeira MVW, Faria JCT, Gonçalves EO, Rocha RLF (2014) Diferentes Substratos para a Produção de Mudas de Sesbania virgata. Floresta e Ambiente 21(2):224–233. (PMID: 10.4322/floram.2014.027)
de Moraes CP, de Brito IP, Tropaldi L, Carbonari CA, Velini ED (2020) Hormetic effect of glyphosate on Urochloa decumbens. J Environ Sci Health, Part B 55(4):376–381. https://doi.org/10.1080/03601234.2019.1705114. (PMID: 10.1080/03601234.2019.1705114)
Demmig-Adams B, Adams WW, Winter K, Meyer A, Schreiber U, Pereira JS, Lange OL (1989) Photochemical efficiency of photosystem II, photon yield of O 2 evolution, photosynthetic capacity, and carotenoid composition during the midday depression of net CO 2 uptaÿke in Arbutus unedo growing in Portugal Planta 177(3):377–387. (PMID: 10.1007/BF00403596)
Duke SO (2018) The history and current status of glifosato. Pest Management Sci 74(5):1027–1034. (PMID: 10.1002/ps.4652)
Fernando N, Manalil S, Florentine SK, Chauhan BS, Seneweera S (2016) Glyphosate resistance of C 3 and C 4 weeds under rising atmospheric CO 2 . Front Plant Sci 7:910. https://doi.org/10.3389/fpls.2016.00910. (PMID: 10.3389/fpls.2016.00910)
Ferreira DF (2011) Sisvar: a computer statistical analysis system. Ciência e agrotecnologia, 35:1039–1042.
Franco AC, Rossatto DR, de Carvalho RSL, Ferreira CS (2014) Cerrado vegetation and global change: the role of functional types, resouSCe availability and disturbance in regulating plant community responses to rising CO 2 levels and climate warming. Theor Exp Plant Physiol 26:19. https://doi.org/10.1007/s40626-014-0002-6. (PMID: 10.1007/s40626-014-0002-6)
Furr M, Mahlberg PG (1981) Histochemical analysis of lacticifers and glandular trichomes in Cannabis sativa. J Nat Prod, v 44:153–159. (PMID: 10.1021/np50014a002)
Han C, Shao H, Zhou S, Mei Y, Cheng Z, Huang L, Lv G (2021) Chemical composition and phytotoxicity of essential oil from invasive plant, Ambrosia artemisiifolia L. Ecotoxicol Environ Saf 211:111879. https://doi.org/10.1016/j.ecoenv.2020.111879. (PMID: 10.1016/j.ecoenv.2020.111879)
Heap I, Duke SO (2018) Overview of glyphosate‐resistant weeds worldwide. Pest Management Sci 74(5):1040–1049. https://doi.org/10.1002/ps.4760. (PMID: 10.1002/ps.4760)
Jalal A, de Oliveira Junior JC, Ribeiro JS, Fernandes GC, Mariano GG, Trindade VDR, Dos Reis AR (2021) Hormesis in plants: physiological and biochemical responses. Ecotoxicol Environ Saf 207:111225. https://doi.org/10.1016/j.ecoenv.2020.111225. (PMID: 10.1016/j.ecoenv.2020.111225)
Kitajima M, Butler WL (1975) Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochohim Biophys Acta 376:105–115. https://doi.org/10.1016/0005-2728(75)90209-1. (PMID: 10.1016/0005-2728(75)90209-1)
Laisk A, Loreto F (1996) Determining photosynthetic parameters from leaf CO 2 exchange and chlorophyll fluorescence (ribulose-1, 5-bisphosphate carboxylase/oxygenase specificity factor,dark respiration in the light, excitation distribution between photosystems, alternative electron transport rate, and mesophyll diffusion resistance Plant Physiology 110(3):903–912. (PMID: 10.1104/pp.110.3.903)
Lichtenthaler HK, Buschamann C, Knapp M (2005) How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio R Fd of leaves with the PAM fluorometer. Photosynthetica 43:379–393. https://doi.org/10.1007/s11099-005-0062-6. (PMID: 10.1007/s11099-005-0062-6)
López-González D, Ledo D, Cabeiras-Freijanes L, Verdeguer M, Reigosa MJ, Sánchez-Moreiras AM (2020) Phytotoxic activity of the natural compound norharmane on crops, weeds and model plants. Plants 9:1328. https://doi.org/10.3390/plants9101328. (PMID: 10.3390/plants9101328)
Louback E, Pereira TAR, Souza SR, Oliveira JA, Silva LC (2016) Vegetation damage in the vicinity of an aluminum smelter in Brasil. Ecol Indic 64:193–203. https://doi.org/10.1016/j.ecolind.2016.02.044. (PMID: 10.1016/j.ecolind.2016.02.044)
Machado AFL, Ferreira LR, Santos LDT, Ferreira FA, Viana RG, Machado MS, Freitas FCL (2010) Eficiência fotossintética e uso da água em plantas de eucalipto pulverizadas com glifosato. Planta Daninha 28(2):319–327. (PMID: 10.1590/S0100-83582010000200011)
Marques KDM, Moreira WDL, Silva JDF, Moreira GDV, Melhorança Filho AL (2020) Effect of glyphosate on the initial growth of paricá seedlings (Schizolobium amazonicum). Revista Agrarian 13(47):9–16. https://doi.org/10.30612/agrarian.v13i47.8074. (PMID: 10.30612/agrarian.v13i47.8074)
Maxwell K, Johnson GN (2000) Chlorophyll fluorescence – a practical guide. J Exp Bot 345:659–668. https://doi.org/10.1093/jexbot/51.345.659. (PMID: 10.1093/jexbot/51.345.659)
Miteva VI, Brenchley JE (2005) Detection and isolation of ultrasmall microorganisms from a 120,000-year-old Greenland glacier ice core. Appl Environ Microbiol 71:7806–7818. https://doi.org/10.1128/AEM.71.12.7806-7818.2005. (PMID: 10.1128/AEM.71.12.7806-7818.2005)
Nista NA, Jannuzzi CASC, Falsarella OM, Benedicto SCD (2020) Society And Sustainable Development: Animal rights in sustainability discourse. Ambiente Sociedade, 23. https://doi.org/10.1590/1809-4422asoc20180278r2vu2020l4ao.
Nguyen TN, Son S, Jordan MC, Levin DB, Ayele BT (2016) Lignin biosynthesis in wheat (Triticum aestivum L.): its response to waterlogging and association with hormonal levels. BMC Plant Biol 16(1):1–16. https://doi.org/10.1186/s12870-016-0717-4. (PMID: 10.1186/s12870-016-0717-4)
O’Brien TP, Feder N, Mccully ME (1985) Polychromatic staining of plant cell walls by toluidine blue. Protoplasma 59(2):368–373. (PMID: 10.1007/BF01248568)
Oxborough K, Baker NR (1997) Resolvendo imagens de fluorescência de clorofila a de eficiência fotossintética em componentes fotoquímicos e não fotoquímicos - cálculo de qP e Fv- / Fm-; semmedir Fo. Photosynthesis research 54(2):135–142. (PMID: 10.1023/A:1005936823310)
Pereira MRR, Souza GSF, Fonseca ED, Martins D (2015) Glyphosate reduced rates on the development of native tree species. Biosci J, Uberlândia 31(2):326–332. Mar./Apr. (PMID: 10.14393/bj-v31n2a2015-21924)
Pereira KD, Viana RG, Trindade JR, Cardoso RA (2017) Morphological and physiological changes on Schizolobium parahyba VAR. Amazonicum (HUBER EX DUCKE) barneby plants intoxicated by glyphosate. Cerne, V 23(2):267–274. https://doi.org/10.1590/01047760201723022316. (PMID: 10.1590/01047760201723022316)
Peres LRS, Della Vechia JF, Cruz C. (2017) Hormesis Effect of Herbicides Subdoses on Submerged Macrophytes in Microassay Conditions. Planta Daninha, 35. https://doi.org/10.1590/s0100-83582017350100076.
Peres-Oliveira MA, Bonfim-Silva EM, da Silva TJA, José JV, Martins KS, Engelberg PAG (2020) Vegetative characteristics of soybean (Glycine max L.) as bioindicator parameter of herbicide in the soil. Austr J Crop Sci 14(7):1171–1179. https://doi.org/10.21475/ajcs.20.14.07.p2483. (PMID: 10.21475/ajcs.20.14.07.p2483)
Qi Y, Liu D, Zhao W, Liu C, Zhou Z, Wang P (2015) Enantioselective phytotoxicity and bioacitivity of the enantiomers of the herbicide napropamide. Pest Biochem Physiol Washington 125:38–44. https://doi.org/10.1016/j.pestbp.2015.06.004.
Rodrigues AA, Filho SCV, Mendes GC, Müller C, Rodrigues DA, Mendes GC, Rehna LS, Costa AC, Vital RG, Sales JF (2018) Sapindus saponaria bioindicator potential concerning potassium fluoride exposure by simulated rainfall: Anatomical and physiological traits. Ecol Indicators 89:552–558. https://doi.org/10.1016/j.ecolind.2018.02.043. (PMID: 10.1016/j.ecolind.2018.02.043)
Salomão PEA, Ferro AMS, Ruas WF (2020) Herbicidas no Brasil: um breve revisão. Res Soc Dev 9(2):e32921990–e32921990. https://doi.org/10.33448/rsd-v9i2.1990. (PMID: 10.33448/rsd-v9i2.1990)
Sanchez-Domene D, Navarro-Lozano A, Acayaba R, Picheli K, Montagner C, Rossa-Feres DC, da Silva FR, de Almeida EA (2018) Eye malformation baseline in Scinax fuscovarius larvae populations that inhabit agroecosystem ponds in southern Brazil. Amphibia-Reptilia 39:325–334. https://doi.org/10.1163/15685381-20181038. (PMID: 10.1163/15685381-20181038)
Santana JEDS, Leles PSDS, Resende ASD, Machado AFL, Ribeiro JG, Gomes RF (2020) Grasses Control Strategies in Setting Restoration Stand of the Atlantic Forest. Floresta e Ambiente, 27(2). https://doi.org/10.1590/2179-8087.006619.
Souza JRD, Perecin D, Azania CAM, Schiavetto AR, Pizzo IV, Candido LS (2009) Tolerância de cultivares de cana-de-açúcar a herbicidas aplicados em pós-emergência. Bragantia 68(4):941–951. (PMID: 10.1590/S0006-87052009000400014)
Vargas-Hernandez M, Macias-Bobadilla I, Guevara-Gonzalez RG, Romero-Gomez SDJ, Rico Garcia E, Ocampo-Velazquez RV, Torres-Pacheco I (2017) Plant hormesis management with biostimulants of biotic origin in agriculture. Front Plant Sci 8:1762. https://doi.org/10.3389/fpls.2017.01762. (PMID: 10.3389/fpls.2017.01762)
Velini ED, Alves E, Godoy CM, Meschede DK, Sousza RT, Duke SO (2008) Glifosato applied at low doses can stimulate plant growth. Pest Manag Sci 65(4):317–460. https://doi.org/10.1002/ps.1562. (PMID: 10.1002/ps.1562)
Vitorino HS, Martins D (2012) Effect of water stress on the efficiency of herbicides and on the biochemical characteristics of Ipomoea grandifolia. Planta Daninha 30(1):185–191. https://doi.org/10.1590/S0100-83582012000100021. (PMID: 10.1590/S0100-83582012000100021)
Wagner JF, Merotto Jr A (2014) Physiological and nutritional evaluation of soybean resistant to glyphosate in comparison with near isogenic lines. Ciência Rural, 44, 3 https://doi.org/10.1590/S0103-84782014000300002.
Yan H, Wu L, Filardo F, Yang X, Zhao X, Fu D (2017) Chemical and hydraulic signals regulate stomatal behavior and photosynthetic activity in maize during progressive drought. Acta Phisiologiae Plantarum 39(6):125. https://doi.org/10.1007/s11738-017-2418-5. (PMID: 10.1007/s11738-017-2418-5)
Yilmaz G, Dane F (2012) Phytotoxicity Induced by Herbicide and Surfactant on stomata and epicuticular wax of Wheat. Romanian Biotechnol Lett 17(6):7757–7765.
Zobiole LHS, Kremer RJ, Oliveira RS, JrConstantin J, (2011) Glyphosate affects chlorophyll, nodulation and nutrient accumulation of “second generation” glyphosate-resistant soybean (Glycine max L.). Pest Biochem Physiol 99:53–60. https://doi.org/10.1016/j.pestbp.2010.10.005.
فهرسة مساهمة: Keywords: Growth and development; Herbicide; Leaf anatomy; Photosynthesis
المشرفين على المادة: 0 (Herbicides)
TE7660XO1C (Glycine)
تواريخ الأحداث: Date Created: 20211113 Date Completed: 20220113 Latest Revision: 20231213
رمز التحديث: 20240628
DOI: 10.1007/s10646-021-02499-y
PMID: 34773558
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-3017
DOI:10.1007/s10646-021-02499-y