دورية أكاديمية

Next-generation phylogeography resolves post-glacial colonization patterns in a widespread carnivore, the red fox (Vulpes vulpes), in Europe.

التفاصيل البيبلوغرافية
العنوان: Next-generation phylogeography resolves post-glacial colonization patterns in a widespread carnivore, the red fox (Vulpes vulpes), in Europe.
المؤلفون: McDevitt AD; School of Science, Engineering and Environment, University of Salford, Salford, UK., Coscia I; School of Science, Engineering and Environment, University of Salford, Salford, UK., Browett SS; School of Science, Engineering and Environment, University of Salford, Salford, UK., Ruiz-González A; Department of Zoology and Animal Cell Biology, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain., Statham MJ; Department of Population Health and Reproduction, School of Veterinary Medicine, Mammalian Ecology and Conservation Unit, Center for Veterinary Genetics, University of California, Davis, California, USA., Ruczyńska I; Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland., Roberts L; School of Science, Engineering and Environment, University of Salford, Salford, UK., Stojak J; Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland., Frantz AC; Musée National d'Histoire Naturelle, Luxembourg, Luxembourg., Norén K; Department of Zoology, Stockholm University, Stockholm, Sweden., Ågren EO; Department of Pathology and Wildlife Diseases, National Veterinary Institute, Uppsala, Sweden., Learmount J; National Wildlife Management Centre, Animal and Plant Health Agency, Sand Hutton, UK., Basto M; Department of Animal Biology, Faculty of Sciences, CE3C - Centre for Ecology, Evolution and Environmental Changes, University of Lisbon, Lisbon, Portugal., Fernandes C; Department of Animal Biology, Faculty of Sciences, CE3C - Centre for Ecology, Evolution and Environmental Changes, University of Lisbon, Lisbon, Portugal., Stuart P; Biological and Pharmaceutical Sciences Department, Institute of Technology Tralee, Kerry, Ireland., Tosh DG; National Museums of Northern Ireland, Hollywood, UK., Sindicic M; Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia., Andreanszky T; Croatian Veterinary Institute, Rijeka, Croatia., Isomursu M; Finnish Food Authority, Veterinary Bacteriology and Pathology Research Unit, Oulu, Finland., Panek M; Polish Hunting Association, Czempiń, Poland., Korolev A; Institute of Biology of Komi Science, Remote Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia., Okhlopkov IM; Institute of Biological Problems of Cryolithozone, Siberian Branch of Russian Academy of Sciences, Yakutsk, Russia., Saveljev AP; Department of Animal Ecology, Russian Research Institute of Game Management and Fur Farming, Kirov, Russia., Pokorny B; Environmental Protection College, Velenje, Slovenia., Flajšman K; Slovenian Forestry Institute, Ljubljana, Slovenia., Harrison SWR; School of Animal Rural & Environmental Sciences, Nottingham Trent University, Southwell, UK., Lobkov V; Faculty of Biology, Odessa I.I. Mechnykov National University, Odessa, Ukraine., Ćirović D; Faculty of Biology, University of Belgrade, Belgrade, Serbia., Mullins J; Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland., Pertoldi C; Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark., Randi E; Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.; Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy., Sacks BN; Department of Population Health and Reproduction, School of Veterinary Medicine, Mammalian Ecology and Conservation Unit, Center for Veterinary Genetics, University of California, Davis, California, USA., Kowalczyk R; Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland., Wójcik JM; Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland.
المصدر: Molecular ecology [Mol Ecol] 2022 Feb; Vol. 31 (3), pp. 993-1006. Date of Electronic Publication: 2021 Nov 26.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Blackwell Scientific Publications Country of Publication: England NLM ID: 9214478 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-294X (Electronic) Linking ISSN: 09621083 NLM ISO Abbreviation: Mol Ecol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford, UK : Blackwell Scientific Publications, c1992-
مواضيع طبية MeSH: Foxes*/genetics , Genetic Variation*, Animals ; Bayes Theorem ; Europe ; Humans ; Phylogeny ; Phylogeography
مستخلص: Carnivores tend to exhibit a lack of (or less pronounced) genetic structure at continental scales in both a geographic and temporal sense and this can confound the identification of post-glacial colonization patterns in this group. In this study we used genome-wide data (using genotyping by sequencing [GBS]) to reconstruct the phylogeographic history of a widespread carnivore, the red fox (Vulpes vulpes), by investigating broad-scale patterns of genomic variation, differentiation and admixture amongst contemporary populations in Europe. Using 15,003 single nucleotide polymorphisms (SNPs) from 524 individuals allowed us to identify the importance of refugial regions for the red fox in terms of endemism (e.g., Iberia). In addition, we tested multiple post-glacial recolonization scenarios of previously glaciated regions during the Last Glacial Maximum using an Approximate Bayesian Computation (ABC) approach that were unresolved from previous studies. This allowed us to identify the role of admixture from multiple source population post-Younger Dryas in the case of Scandinavia and ancient land-bridges in the colonization of the British Isles. A natural colonization of Ireland was deemed more likely than an ancient human-mediated introduction as has previously been proposed and potentially points to a larger mammalian community on the island in the early post-glacial period. Using genome-wide data has allowed us to tease apart broad-scale patterns of structure and diversity in a widespread carnivore in Europe that was not evident from using more limited marker sets and provides a foundation for next-generation phylogeographic studies in other non-model species.
(© 2021 John Wiley & Sons Ltd.)
References: Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E., Reeb, C. A., & Saunders, N. C. (1987). Intraspecific Phylogeography: The Mitochondrial DNA Bridge Between Population Genetics and Systematics. Annual Review of Ecology and Systematics, 18(1), 489-522. https://doi.org/10.1146/annurev.es.18.110187.002421.
Beaumont, M., Zhang, W., & Balding, D. (2002). Approximate Bayesian computation in population genetics. Genetics, 162, 2025-2035. https://doi.org/10.1093/genetics/162.4.2025.
Bilton, D. T., Mirol, P. M., Mascheretti, S., Fredga, K., Zima, J., & Searle, J. B. (1998). Mediterranean Europe as an area of endemism for small mammals rather than a source for northwards postglacial colonization. Proceedings of the Royal Society B: Biological Sciences, 265(1402), 1219-1226. https://doi.org/10.1098/rspb.1998.0423.
Cabrera, A. A., & Palsboll, P. J. (2017). Inferring past demographic changes from contemporary genetic data: a simulation-based evaluation of the ABC methods implemented in DIYABC. Molecular Ecology Resources, 17, e94-e110. https://doi.org/10.1111/1755-0998.12696.
Carden, R. F., Higham, T. F. G., & Woodman, P. C. (2020). A reconsideration of the radiocarbon dating of the Marine Isotope Stage 3 fauna from southern Ireland. Boreas, 49(3), 674-684. https://doi.org/10.1111/bor.12451.
Carden, R. F., McDevitt, A. D., Zachos, F. E., Woodman, P. C., O’Toole, P., Rose, H., Monaghan, N. T., Campana, M. G., Bradley, D. G., & Edwards, C. J. (2012). Phylogeographic, ancient DNA, fossil and morphometric analyses reveal ancient and modern introductions of a large mammal: The complex case of red deer (Cervus elaphus) in Ireland. Quaternary Science Reviews, 42, 74-84. https://doi.org/10.1016/j.quascirev.2012.02.012.
Caye, K., Deist, T. M., Martins, H., Michel, O., & François, O. (2016). TESS3: fast inference of spatial population structure and genome scans for selection. Molecular Ecology Resources, 16(2), 540-548. https://doi.org/10.1111/1755-0998.12471.
Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth, B., & McCabe, A. M. (2009). The Last Glacial Maximum. Science, 325(5941), 710-714.
Collin, F.-D., Durif, G., Raynal, L., Lombaert, E., Gautier, M., Vitalis, R., Marin, J.-M., & Estoup, A. (2021). Extending approximate Bayesian computation with supervised machine learning to infer demographic history from genetic polymorphisms using DIYABC Random Forest. Molecular Ecology Resources, 21(8), 2598-2613. https://doi.org/10.1111/1755-0998.13413.
Dowd, M., & Carden, R. F. (2016). First evidence of a Late Upper Palaeolithic human presence in Ireland. Quaternary Science Reviews, 139, 158-163. https://doi.org/10.1016/j.quascirev.2016.02.029.
Dufresnes, C., Miquel, C., Remollino, N., Biollaz, F., Salamin, N., Taberlet, P., & Fumagalli, L. (2018). Howling from the past: Historical phylogeography and diversity losses in European grey wolves. Proceedings of the Royal Society B: Biological Sciences, 285(1884), https://doi.org/10.1098/rspb.2018.1148.
Edwards, C. J., Soulsbury, C. D., Statham, M. J., Ho, S. Y. W., Wall, D., Dolf, G., Iossa, G., Baker, P. J., Harris, S., Sacks, B. N., & Bradley, D. G. (2012). Temporal genetic variation of the red fox, Vulpes vulpes, across western Europe and the British Isles. Quaternary Science Reviews, 57, 95-104. https://doi.org/10.1016/j.quascirev.2012.10.010.
Edwards, R., & Brooks, A. (2008). The Island of Ireland: Drowning the Myth of an Irish Land-bridge?. In J. L. Davenport, D. P. Sleeman & P. C. Woodman (Eds.), Mind the Gap: Postglacial Colonisation of Ireland (pp. 19-34). Belfast, UK: The Irish Naturalists’ Journal Ltd.
Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. E. (2011). A Robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One, 6, e19379. https://doi.org/10.1371/journal.pone.0019379.
Emerson, K. J., Merz, C. R., Catchen, J. M., Hohenlohe, P. A., Cresko, W. A., Bradshaw, W. E., & Holzapfel, C. M. (2010). Resolving postglacial phylogeography using high-throughput sequencing. Proceedings of the National Academy of Sciences of the United States of America, 107, 16196-16200. https://doi.org/10.1073/pnas.1006538107.
Fraimout, A., Debat, V., Fellous, S., Hufbauer, R. A., Foucaud, J., Pudlo, P., & Nielsen, R. (2017). Deciphering the routes of invasion of Drosophila suzukii by Means of ABC Random Forest. Molecular Biology and Evolution, 34(4), 980-996. https://doi.org/10.1093/molbev/msx050.
Frantz, A. C., McDevitt, A. D., Pope, L. C., Kochan, J., Davison, J., Clements, C. F., Elmeros, M., Molina-Vacas, G., Ruiz-Gonzalez, A., Balestrieri, A., Van Den Berge, K., Breyne, P., Do Linh San, E., Ågren, E. O., Suchentrunk, F., Schley, L., Kowalczyk, R., Kostka, B. I., Ćirović, D., … Burke, T. (2014). Revisiting the phylogeography and demography of European badgers (Meles meles) based on broad sampling, multiple markers and simulations. Heredity, 113(5), 443-453. https://doi.org/10.1038/hdy.2014.45.
Garrick, R. C., Bonatelli, I. A. S., Hyseni, C., Morales, A., Pelletier, T. A., Perez, M. F., Rice, E., Satler, J. D., Symula, R. E., Thomé, M. T. C., & Carstens, B. C. (2015). The evolution of phylogeographic data sets. Molecular Ecology, 24, 1164-1171. https://doi.org/10.1111/mec.13108.
Glaubitz, J. C., Casstevens, T. M., Lu, F., Harriman, J., Elshire, R. J., Sun, Q., & Buckler, E. S. (2014). TASSEL-GBS: A High Capacity Genotyping by Sequencing Analysis Pipeline. PLoS One, 9, e90346. https://doi.org/10.1371/journal.pone.0090346.
Herman, J. S., McDevitt, A. D., Kawałko, A., Jaarola, M., Wójcik, J. M., & Searle, J. B. (2014). Land-bridge calibration of molecular clocks and the post-glacial Colonization of Scandinavia by the Eurasian field vole Microtus agrestis. PLoS One, 9(8), e103949. https://doi.org/10.1371/journal.pone.0103949.
Hewitt, G. (1999). Post-glacial re-colonization of European biota. Biological Journal of the Linnean Society, 68(1-2), 87-112. https://doi.org/10.1111/j.1095-8312.1999.tb01160.x.
Hofreiter, M., Serre, D., Rohland, N., Rabeder, G., Nagel, D., Conard, N., Munzel, S., & Paabo, S. (2004). Lack of phylogeography in European mammals before the last glaciation. Proceedings of the National Academy of Sciences of the United States of America, 101(35), 12963-12968. https://doi.org/10.1073/pnas.0403618101.
Huang, Z., Young, N. D., Reagon, M., Hyma, K. E., Olsen, K. M., Jia, Y., & Caicedo, A. L. (2017). All roads lead to weediness: Patterns of genomic divergence reveal extensive recurrent weedy rice origins from South Asian Oryza. Molecular Ecology, 26(12), 3151-3167. https://doi.org/10.1111/mec.14120.
Jeffries, D. L., Copp, G. H., Lawson Handley, L., Olsén, K. H., Sayer, C. D., & Hänfling, B. (2016). Comparing RADseq and microsatellites to infer complex phylogeographic patterns, an empirical perspective in the Crucian carp, Carassius carassius, L. Molecular Ecology, 25(13), 2997-3018. https://doi.org/10.1111/mec.13613.
Jombart, T., & Ahmed, I. (2011). adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics, 27(21), 3070-3071. https://doi.org/10.1093/bioinformatics/btr521.
Kalinowski, S. T. (2005). hp-rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Molecular Ecology Notes, 5(1), 187-189. https://doi.org/10.1111/j.1471-8286.2004.00845.x.
Keis, M., Remm, J., Ho, S. Y. W., Davison, J., Tammeleht, E., Tumanov, I. L., Saveljev, A. P., Männil, P., Kojola, I., Abramov, A. V., Margus, T., & Saarma, U. (2013). Complete mitochondrial genomes and a novel spatial genetic method reveal cryptic phylogeographical structure and migration patterns among brown bears in north-western Eurasia. Journal of Biogeography, 40(5), 915-927. https://doi.org/10.1111/jbi.12043.
Koblmüller, S., Vilà, C., Lorente-Galdos, B., Dabad, M., Ramirez, O., Marques-Bonet, T., & Leonard, J. A. (2016). Whole mitochondrial genomes illuminate ancient intercontinental dispersals of grey wolves (Canis lupus). Journal of Biogeography, 43(9), 1728-1738. https://doi.org/10.1111/jbi.12765.
Korsten, M., Ho, S. Y. W., Davison, J., Pähn, B., Vulla, E., Roht, M., Tumanov, I. L., Kojola, I., Andersone-lilley, Z., Ozolins, J., Pilot, M., Mertzanis, Y., Giannakopoulos, A., Vorobiev, A. A., Markov, N. I., Saveljev, A. P., Lyapunova, E. A., Abramov, A. V., Männil, P., … Saarma, U. (2009). Sudden expansion of a single brown bear maternal lineage across northern continental Eurasia after the last ice age: A general demographic model for mammals? Molecular Ecology, 18(9), 1963-1979. https://doi.org/10.1111/j.1365-294X.2009.04163.x.
Kotlík, P., Marková, S., Konczal, M., Babik, W., & Searle, J. B. (2018). Genomics of end-pleistocene population replacement in a small mammal. Proceedings of the Royal Society B: Biological Sciences, 285(1872), https://doi.org/10.1098/rspb.2017.2624.
Kukekova, A. V., Johnson, J. L., Xiang, X., Feng, S., Liu, S., Rando, H. M., Kharlamova, A. V., Herbeck, Y., Serdyukova, N. A., Xiong, Z., Beklemischeva, V., Koepfli, K.-P., Gulevich, R. G., Vladimirova, A. V., Hekman, J. P., Perelman, P. L., Graphodatsky, A. S., O’Brien, S. J., Wang, X. U., … Zhang, G. (2018). Red fox genome assembly identifies genomic regions associated with tame and aggressive behaviours. Nature Ecology and Evolution, 2(9), 1479-1491. https://doi.org/10.1038/s41559-018-0611-6.
Kutschera, V. E., Lecomte, N., Janke, A., Selva, N., Sokolov, A. A., Haun, T., Steyer, K., Nowak, C., & Hailer, F. (2013). A range-wide synthesis and timeline for phylogeographic events in the red fox (Vulpes vulpes). BMC Evolutionary Biology, 13(1), 114. https://doi.org/10.1186/1471-2148-13-114.
Lagerholm, V. K., Sandoval-Castellanos, E., Ehrich, D., Abramson, N. I., Nadachowski, A., Kalthoff, D. C., Germonpré, M., Angerbjörn, A., Stewart, J. R., & Dalén, L. (2014). On the origin of the Norwegian lemming. Molecular Ecology, 23(8), 2060-2071. https://doi.org/10.1111/mec.12698.
Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754-1760. https://doi.org/10.1093/bioinformatics/btp324.
Loog, L., Thalmann, O., Sinding, M.-H., Schuenemann, V. J., Perri, A., Germonpré, M., Bocherens, H., Witt, K. E., Samaniego Castruita, J. A., Velasco, M. S., Lundstrøm, I. K. C., Wales, N., Sonet, G., Frantz, L., Schroeder, H., Budd, J., Jimenez, E.-L., Fedorov, S., Gasparyan, B., … Manica, A. (2020). Ancient DNA suggests modern wolves trace their origin to a late Pleistocene expansion from Beringia. Molecular Ecology, 29(9), 1596-1610. https://doi.org/10.1111/mec.15329.
Luu, K., Bazin, E., & Blum, M. G. B. (2017). pcadapt: an R package to perform genome scans for selection based on principal component analysis. Molecular Ecology Resources, 17(1), 67-77. https://doi.org/10.1111/1755-0998.12592.
Marková, S., Horniková, M., Lanier, H. C., Henttonen, H., Searle, J. B., Weider, L. J., & Kotlik, P. (2020). High genomic diversity in the bank vole at the northern apex of a range expansion: the role of multiple colonizations and end-glacial refigua. Molecular Ecology, 29(9), 1730-1744.
Martínková, N., McDonald, R. A., & Searle, J. B. (2007). Stoats (Mustela erminea) provide evidence of natural overland colonization of Ireland. Proceedings. Biological Sciences/the Royal Society, 274, 1387-1393. https://doi.org/10.1098/rspb.2007.0334.
McCormack, J. E., Hird, S. M., Zellmer, A. J., Carstens, B. C., & Brumfield, R. T. (2013). Applications of next-generation sequencing to phylogeography and phylogenetics. Molecular Phylogenetics and Evolution, 66(2), 526-538. https://doi.org/10.1016/j.ympev.2011.12.007.
McDevitt, A. D., Coscia, I., Browett, S. S., Ruiz-González, A., Statham, M. J., Ruczyńska, I., Roberts, L., Stojak, J., Frantz, A. C., Norén, K., Ågren, E. O., Learmount, J., Basto, M., Fernandes, C., Stuart, P., Tosh, D. G., Sindicic, M., Andreanszky, T., Isomursu, M., Wójcik, J. M. (2020). Next-generation phylogeography resolves post-glacial colonization patterns in a widespread carnivore, the red fox (Vulpes vulpes), in Europe. Dryad, Dataset. https://doi.org/10.5061/dryad.b2rbnzsb0.
McDevitt, A. D., Vega, R., Rambau, R. V., Yannic, G., Herman, J. S., Hayden, T. J., & Searle, J. B. (2011). Colonization of Ireland: revisiting “the pygmy shrew syndrome” using mitochondrial, Y chromosomal and microsatellite markers. Heredity, 107(6), 548-557. https://doi.org/10.1038/hdy.2011.41.
McDevitt, A. D., Zub, K., Kawałko, A., Oliver, M. K., Herman, J. S., & Wójcik, J. M. (2012). Climate and refugial origin influence the mitochondrial lineage distribution of weasels (Mustela nivalis) in a phylogeographic suture zone. Biological Journal of the Linnean Society, 106(1), 57-69. https://doi.org/10.1111/j.1095-8312.2012.01840.x.
Meirmans, P. G., & Van Tienderen, P. H. (2004). GENOTYPE and GENODIVE: Two programs for the analysis of genetic diversity of asexual organisms. Molecular Ecology Notes, 4(4), 792-794. https://doi.org/10.1111/j.1471-8286.2004.00770.x.
Mucci, N., Arrendal, J., Ansorge, H., Bailey, M., Bodner, M., Delibes, M., Ferrando, A., Fournier, P., Fournier, C., Godoy, J. A., Hajkova, P., Hauer, S., Heggberget, T. M., Heidecke, D., Kirjavainen, H., Krueger, H.-H., Kvaloy, K., Lafontaine, L., Lanszki, J., … Randi, E. (2010). Genetic diversity and landscape genetic structure of otter (Lutra lutra) populations in Europe. Conservation Genetics, 11(2), 583-599. https://doi.org/10.1007/s10592-010-0054-3.
Norén, K., Statham, M. J., Ågren, E. O., Isomursu, M., Flagstad, Ø., Eide, N. E., Berg, T. B. G., Bech-Sanderhoff, L., & Sacks, B. N. (2015). Genetic footprints reveal geographic patterns of expansion in Fennoscandian red foxes. Global Change Biology, 21(9), 3299-3312. https://doi.org/10.1111/gcb.12922.
Patton, H., Hubbard, A., Andreassen, K., Auriac, A., Whitehouse, P. L., Stroeven, A. P., Shackleton, C., Winsborrow, M., Heyman, J., & Hall, A. M. (2017). Deglaciation of the Eurasian ice sheet complex. Quaternary Science Reviews, 169, 148-172. https://doi.org/10.1016/j.quascirev.2017.05.019.
Pedreschi, D., García-Rodríguez, O., Yannic, G., Cantarello, E., Diaz, A., Golicher, D., Korstjens, A. H., Heckel, G., Searle, J. B., Gillingham, P., Hardouin, E. A., & Stewart, J. R. (2019). Challenging the European southern refugium hypothesis: Species-specific structures versus general patterns of genetic diversity and differentiation among small mammals. Global Ecology and Biogeography, 28(2), 262-274. https://doi.org/10.1111/geb.12828.
Provan, J., & Bennett, K. D. (2008). Phylogeographic insights into cryptic glacial refugia. Trends in Ecology and Evolution, 23(10), 564-571. https://doi.org/10.1016/j.tree.2008.06.010.
Puckett, E. E., Park, J., Combs, M., Blum, M. J., Bryant, J. E., Caccone, A., & Munshi-South, J. (2016). Global population divergence and admixture of the brown rat (Rattus norvegicus). Proceedings of the Royal Society B: Biological Sciences, 283, 20161762. https://doi.org/10.1098/rspb.2016.1762.
Pudlo, P., Marin, J. M., Estoup, A., Cornuet, J. M., Gautier, M., & Robert, C. P. (2015). Reliable ABC model choice via random forests. Bioinformatics, 32(6), 859-866. https://doi.org/10.1093/bioinformatics/btv684.
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Maller, J., Sklar, P., de Bakker, P. I. W., Daly, M. J., & Sham, P. C. (2007). PLINK: A tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 81(3), 559-575. https://doi.org/10.1086/519795.
Raj, A., Stephens, M., & Pritchard, J. K. (2014). fastSTRUCTURE: Variational Inference of Population Structure in Large SNP Data Sets. Genetics, 197(2), 573-589. https://doi.org/10.1534/genetics.114.164350.
Sacks, B. N., Statham, M. J., Perrine, J. D., Wisely, S. M., & Aubry, K. B. (2010). North American montane red foxes: Expansion, fragmentation, and the origin of the Sacramento Valley red fox. Conservation Genetics, 11(4), 1523-1539. https://doi.org/10.1007/s10592-010-0053-4.
Schweizer, R. M., vonHoldt, B. M., Harrigan, R., Knowles, J. C., Musiani, M., Coltman, D., Novembre, J., & Wayne, R. K. (2016). Genetic subdivision and candidate genes under selection in North American grey wolves. Molecular Ecology, 25(1), 380-402. https://doi.org/10.1111/mec.13364.
Searle, J. B., Kotlík, P., Rambau, R. V., Marková, S., Herman, J. S., & McDevitt, A. D. (2009). The Celtic fringe of Britain: insights from small mammal phylogeography. Proceedings of the Royal Society B: Biological Sciences, 276(1677), 4287-4294. https://doi.org/10.1098/rspb.2009.1422.
Shafer, A. B. A., Gattepaille, L. M., Stewart, R. E. A., & Wolf, J. B. W. (2015). Demographic inferences using short-read genomic data in an approximate Bayesian computation framework: in silico evaluation of power, biases and proof of concept in Atlantic walrus. Molecular Ecology, 24(2), 328-345. https://doi.org/10.1111/mec.13034.
Shafer, A. B. A., Peart, C. R., Tusso, S., Maayan, I., Brelsford, A., Wheat, C. W., & Wolf, J. B. W. (2017). Bioinformatic processing of RAD-seq data dramatically impacts downstream population genetic inference. Methods in Ecology and Evolution, 8(8), 907-917. https://doi.org/10.1111/2041-210X.12700.
Sommer, R., & Benecke, N. (2004). Late- and Post-Glacial history of the Mustelidae in Europe. Mammal Review, 34(4), 249-284. https://doi.org/10.1111/j.1365-2907.2004.00043.x.
Sommer, R., & Benecke, N. (2005). Late-Pleistocene and early Holocene history of the canid fauna of Europe (Canidae). Mammalian Biology, 70(4), 227-241. https://doi.org/10.1016/j.mambio.2004.12.001.
Sommer, R. S., & Nadachowski, A. (2006). Glacial refugia of mammals in Europe: evidence from. Mammal Review, 36(4), 251-265. https://doi.org/10.1111/j.1365-2907.2006.00093.x.
Sommer, R. S., Zachos, F. E., Street, M., Jöris, O., Skog, A., & Benecke, N. (2008). Late Quaternary distribution dynamics and phylogeography of the red deer (Cervus elaphus) in Europe. Quaternary Science Reviews, 27(7-8), 714-733. https://doi.org/10.1016/j.quascirev.2007.11.016.
Statham, M. J., Edwards, C. J., Norén, K., Soulsbury, C. D., & Sacks, B. N. (2018). Genetic analysis of European red foxes reveals multiple distinct peripheral populations and central continental admixture. Quaternary Science Reviews, 197, 257-266. https://doi.org/10.1016/j.quascirev.2018.08.019.
Statham, M. J., Murdoch, J., Janecka, J., Aubry, K. B., Edwards, C. J., Soulsbury, C. D., Berry, O., Wang, Z., Harrison, D., Pearch, M., Tomsett, L., Chupasko, J., & Sacks, B. N. (2014). Range-wide multilocus phylogeography of the red fox reveals ancient continental divergence, minimal genomic exchange and distinct demographic histories. Molecular Ecology, 23(19), 4813-4830. https://doi.org/10.1111/mec.12898.
Stojak, J., Borowik, T., McDevitt, A. D., & Wójcik, J. M. (2019). Climatic influences on the genetic structure and distribution of the common vole and field vole. Mammal Research, 64, 19-29. https://doi.org/10.1007/s13364-018-0395-8.
Stojak, J., McDevitt, A. D., Herman, J. S., Kryštufek, B., Uhlíková, J., Purger, J. J., Lavrenchenko, L. A., Searle, J. B., & Wójcik, J. M. (2016). Between the Balkans and the Baltic: Phylogeography of a Common Vole Mitochondrial DNA Lineage Limited to Central Europe. PLoS One, 11(12), e0168621. https://doi.org/10.1371/journal.pone.0168621.
Stojak, J., & Tarnowska, E. (2019). Polish suture zone as the goblet of truth in post-glacial history of mammals in Europe. Mammal Research, 64, 463-475. https://doi.org/10.1007/s13364-019-00433-6.
Taberlet, P., Fumagalli, L., Wust-Saucy, A. G., & Cosson, J. F. (1998). Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology, 7(4), 453-464. https://doi.org/10.1046/j.1365-294x.1998.00289.x.
Teacher, A. G. F., Thomas, J. A., & Barnes, I. (2011). Modern and ancient red fox (Vulpes vulpes) in Europe show an unusual lack of geographical and temporal structuring, and differing responses within the carnivores to historical climatic change. BMC Evolutionary Biology, 11(1), 214. https://doi.org/10.1186/1471-2148-11-214.
Van Wyngaarden, M., Snelgrove, P. V. R., DiBacco, C., Hamilton, L. C., Rodríguez-Ezpeleta, N., Jeffery, N. W., & Bradbury, I. R. (2017). Identifying patterns of dispersal, connectivity and selection in the sea scallop, Placopecten magellanicus, using RADseq-derived SNPs. Evolutionary Applications, 10(1), 102-117. https://doi.org/10.1111/eva.12432.
Vega, R., McDevitt, A. D., Stojak, J., Mishta, A., Wójcik, J. M., Kryštufek, B., & Searle, J. B. (2020). Phylogeographical structure of the pygmy shrew: revisiting the roles of southern and northern refugia in Europe. Biological Journal of the Linnean Society, 129(4), 901-917. https://doi.org/10.1093/biolinnean/blz209.
Wallén, J., Statham, M. J., Ågren, E., Isomursu, M., Flagstad, Ø., Bjørneboe-berg, T., & Norén, K. (2018). Multiple recolonization routes towards the north: population history of the Fennoscandian red fox (Vulpes vulpes). Biological Journal of the Linnean Society, 124, 621-632.
Walton, Z., Samelius, G., Odden, M., & Willebrand, T. (2018). Long-distance dispersal in red foxes Vulpes vulpes revealed by GPS tracking. European Journal of Wildlife Research, 64, 64. https://doi.org/10.1007/s10344-018-1223-9.
Westergaard, K. B., Zemp, N., Bruederle, L. P., Stenøien, H. K., Widmer, A., & Fior, S. (2019). Population genomic evidence for plant glacial survival in Scandinavia. Molecular Ecology, 28(4), 818-832. https://doi.org/10.1111/mec.14994.
Woodman, P., McCarthy, M., & Monaghan, N. (1997). The Irish quaternary fauna project. Quaternary Science Reviews, 16(2), 129-159. https://doi.org/10.1016/S0277-3791(96)00037-6.
معلومات مُعتمدة: DEC-2012/05/B/NZ8/00976 Narodowe Centrum Nauki
فهرسة مساهمة: Keywords: Ireland; Last Glacial Maximum; Scandinavia; approximate Bayesian computation; genotyping-by-sequencing; mammal; single nucleotide polymorphisms
تواريخ الأحداث: Date Created: 20211114 Date Completed: 20220131 Latest Revision: 20220131
رمز التحديث: 20231215
DOI: 10.1111/mec.16276
PMID: 34775636
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-294X
DOI:10.1111/mec.16276