دورية أكاديمية

Spin-Spin Coupling Controls the Gas-Phase Reactivity of Aromatic σ-Type Triradicals.

التفاصيل البيبلوغرافية
العنوان: Spin-Spin Coupling Controls the Gas-Phase Reactivity of Aromatic σ-Type Triradicals.
المؤلفون: Ding D; Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA., Feng E; Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA., Kotha RR; Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA., Chapman NC; Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA., Jiang H; Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA., Nash JJ; Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA., Kenttämaa HI; Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA.
المصدر: Chemistry (Weinheim an der Bergstrasse, Germany) [Chemistry] 2022 Jan 03; Vol. 28 (1), pp. e202102968. Date of Electronic Publication: 2021 Dec 06.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 9513783 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-3765 (Electronic) Linking ISSN: 09476539 NLM ISO Abbreviation: Chemistry Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: Weinheim, Germany : Wiley-VCH
مستخلص: Examination of the reactions of σ-type quinolinium-based triradicals with cyclohexane in the gas phase demonstrated that the radical site that is the least strongly coupled to the other two radical sites reacts first, independent of the intrinsic reactivity of this radical site, in contrast to related biradicals that first react at the most electron-deficient radical site. Abstraction of one or two H atoms and formation of an ion that formally corresponds to a combination of the ion and cyclohexane accompanied by elimination of a H atom ("addition-H") were observed. In all cases except one, the most reactive radical site of the triradicals is intrinsically less reactive than the other two radical sites. The product complex of the first H atom abstraction either dissociates to give the H-atom-abstraction product and the cyclohexyl radical or the more reactive radical site in the produced biradical abstracts a H atom from the cyclohexyl radical. The monoradical product sometimes adds to cyclohexene followed by elimination of a H atom, generating the "addition-H" products. Similar reaction efficiencies were measured for three of the triradicals as for relevant monoradicals. Surprisingly, the remaining three triradicals (all containing a meta-pyridyne moiety) reacted substantially faster than the relevant monoradicals. This is likely due to the exothermic generation of a meta-pyridyne analog that has enough energy to attain the dehydrocarbon atom separation common for H-atom-abstraction transition states of protonated meta-pyridynes.
(© 2021 Wiley-VCH GmbH.)
References: H. H. Wenk, M. Winkler, W. Sander, Angew. Chem. Int. Ed. 2003, 42, 502-528.
W. E. Bachmann, H. T. Clarke, J. Am. Chem. Soc. 1927, 49, 2089-2098.
R. Sanz, Org. Prep. Proced. Int. 2008, 40, 215-291.
A. Ashraful, Am. J. Heterocycl. Chem. 2017, 3, 47-54.
G. G. Odian, Principles of Polymerization, 4th ed.; Wiley-Interscience: Hoboken, 2004.
C. Liu, M. E. Sandoval-Salinas, Y. Hong, T. Y. Gopalakrishna, H. Phan, N. Aratani, T. S. Herng, J. Ding, H. Yamada, D. Kim, et al. Chem 2018, 4, 1586-1595.
R. Romeo, S. V. Giofre, M. A. Chiacchio, Curr. Med. Chem. 2017, 24, 3433-3484.
P. A. Wender, R. Jeon, Org. Lett. 1999, 1, 2117-2120.
E. Kraka, D. Cremer, J. Am. Chem. Soc. 2000, 122, 8245-8264.
P. A. Wender, R. R. Jeon, Bioorg. Med. Chem. Lett. 2003, 13, 1763-1766.
F. Widjaja, J. P. Max, Z. Jin, J. J. Nash, H. I. Kenttämaa, J. Am. Soc. Mass Spectrom. 2017, 28, 1392-1405.
R. R. Kotha, J. J. Nash, H. I. Kenttämaa, Eur. J. Org. Chem. 2017, 2017, 1407-1412.
P. E. Williams, B. J. Jankiewicz, L. Yang, H. I. Kenttämaa, Chem. Rev. 2013, 113, 6949-6985.
M. Prendergast, B. Kirk, J. Savee, D. Osborn, C. Taatjes, K. Masters, S. Blanksby, G. Silva, A. Trevitt, Phys. Chem. Chem. Phys. 2016, 18, 4320-4332.
D. G. Harman, S. J. Blanksby, Org. Biomol. Chem. 2007, 5, 3495-3503.
A. K. Y. Lam, C. Li, G. Khairallah, B. B. Kirk, S. J. Blanksby, A. J. Trevitt, U. Wille, R. A. O′Hair, G. da Silva, Phys. Chem. Chem. Phys. 2012, 14, 2417-2426.
T. Ly, B. B. Kirk, P. I. Hettiarachchi, B. L. J. Poad, A. J. Trevitt, G. da Silva, S. Blanksby, Phys. Chem. Chem. Phys. 2011, 13, 16314-16323.
B. B. Kirk, D. G. Harman, S. J. Blanksby, J. Phys. Chem. A 2010, 114, 1446-1456.
C. K. Barlow, W. D. McFadyen, R. A. J. O′Hair, J. Am. Chem. Soc. 2005, 127, 6109-6115.
Y. Xia, P. A. Chrisman, S. J. Pitteri, D. E. Erickson, S. A. McLuckey, J. Am. Chem. Soc. 2006, 128, 11792-11798.
B. N. Moore, S. J. Blanksby, R. R. Julian, Chem. Commun. 2009, 33, 5015-5017.
O. J. Shiels, P. D. Kelly, C. C. Bright, B. L. J. Poad, S. J. Blanksby, G. da Silva, A. J. Trevitt, J. Am. Soc. Mass Spectrom. 2021, 32, 537-547.
C. K. Barlow, A. Wright, J. J. Easton, R. A. O′Hair, Org. Biomol. Chem. 2011, 9, 3733-3745.
J. M. Kanabus-Kaminska, B. C. Gilbert, D. Griller, J. Am. Chem. Soc. 1989, 111, 3311-3314.
 .
K. K. Thoen, R. L. Smith, J. Nousiainen, E. D. Nelson, H. I. Kenttämaa, Charged Phenyl Radicals, J. Am. Chem. Soc. 1996, 118, 8669-8676;.
J. Heidbrink, L. Ramirez-Arizmendi, K. K. Thoen, L. Guler, H. I. Kenttämaa, J. Phys. Chem. A. 2001, 105, 7875-7884;.
K. K. Thoen, H. I. Kenttämaa, J. Am. Chem. Soc. 1999, 121, 800-805:;.
T. Mondal, S. Shaik, H. Kenttämaa, T. Stuyver, Chem. Sci. 2021, 12, 4800-4809.
J. Gao, B. J. Jankiewicz, J. Reece, H. Sheng, C. J. Cramer, J. J. Nash, H. I. Kenttämaa, Chem. Sci. 2014, 5, 2205-2215.
D. Ding, H. Jiang, X. Ma, J. J. Nash, H. I. Kenttämaa, J. Org. Chem. 2020, 85, 8415-8428.
L. Jing, J. J. Nash, H. I. Kenttämaa, J. Am. Chem. Soc. 2008, 130, 17697-17709.
N. M. Donahue, J. S. Clarke, J. G. Anderson, J. Phys. Chem. A 1998, 102, 3923-3933.
N. R. Vinueza, E. F. Archibold, B. J. Jankiewicz, V. A. Gallardo, S. C. Habicht, M. S. Aqueel, J. J. Nash, H. I. Kenttämaa, Chem. Eur. J. 2012, 18, 8692-8698.
J. J. Nash, H. I. Kenttämaa, C. J. Cramer, J. Phys. Chem. A 2005, 109, 10348-10356.
C. F. Logan, P. Chen, J. Am. Chem. Soc. 1996, 118, 2113-2114.
R. R. Kotha, R. Yerabolu, D. Ding, L. Szalwinski, X. Ma, A. Wittrig, J. Kong, J. J. Nash, H. I. Kenttämaa, Chem. Eur. J. 2019, 25, 4472-4477.
H. I. J. J. Nash, K. E. Nizzi, A. Adeuya, M. J. Yurkovich, C. J. Cramer, H. I. Kenttämaa, J. Am. Chem. Soc. 2005, 127, 5760-5761.
R. R. Kotha, R. Yerabolu, M. S. Aqueel, J. S. Riedeman, L. Szalwinski, D. Ding, J. J. Nash, H. I. Kenttämaa, J. Am. Chem. Soc. 2019, 141, 6672-6679.
N. R. Vinueza, B. J. Jankiewicz, V. A. Gallardo, G. Z. LaFavers, D. DeSutter, J. J. Nash, H. I. Kenttämaa, Chem. Eur. J. 2016, 22, 809-815.
B. J. Jankiewicz, A. Adeuya, M. J. Yurkovich, N. R. Vinueza, S. J. Gardner, M. Zhou, J. J. Nash, H. I. Kenttämaa, Angew. Chem. Int. Ed. 2007, 46, 9198-9201.
B. J. Jankiewicz, N. R. Vinueza, J. N. Reece, Y. C. Lee, P. Williams, N. N. Nash, H. I. Kenttämaa, Chem. Eur. J. 2012, 18, 969-974.
J. Gao, B. J. Jankiewicz, H. Sheng, L. Kirkpatrick, X. Ma, J. J. Nash, H. I. Kenttämaa, Eur. J. Org. Chem. 2018, 2018, 6582-6589.
V. A. Gallardo, B. J. Jankiewicz, N. R. Vinueza, J. J. Nash, H. I. Kenttämaa, J. Am. Chem. Soc. 2012, 134, 1926-1929.
 .
“Gas-phase Reactivity Studies of Charged Quinoline Polyradicals by Using Distonic Ion Approach and Linear Quadrupole Ion Trap Mass Spectrometry, and Mechanistic Studies on Metal-Promoted Self-Assembly of Collagen Mimetic Peptides”, R. R. Kotha, Ph.D. Thesis, Purdue University (USA), 2017, 249;.
M. Winkler, W. Sander, Austr. J. Chem. 2010, 63, 1013-1047;.
L. V. Slipchenko, A. I. Krylov, J. Chem. Phys. 2003, 118, 9614-9622;.
A. I. Krylov, J. Phys. Chem. A 2005, 109, 10638-10645;.
H. M. T. Nguyen, T. Höltzl, G. Gopakumar, T. Veszprémi, J. Peeters, M. T. Nguyen, Chem. Phys. 2005, 316, 125-140.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, Gaussian 16, Revision A. 03, Gaussian Inc., 2016.
T. H. Dunning Jr, J. Chem. Phys. 1989, 90, 1007-1023.
X. Ma, C. Jin, D. Wang, J. J. Nash, H. I. Kenttämaa, Chem. Eur. J. 2019, 25, 6355-6361.
H. Sheng, P. Williams, W. Tang, J. Riedeman, M. Zhang, H. I. Kenttämaa, J. Org. Chem. 2014, 79, 2883-2889.
T. Su, W. J. Chesnavich, J. Chem. Phys. 1982, 76, 5183-5185.
J. P. Max, X. Ma, R. R. Kotha, D. Ding, J. Milton, J. J. Nash, H. I. Kenttämaa, Int. J. Mass Spectrom. 2019, 435, 280-290.
معلومات مُعتمدة: CHE-1464712 The US National Science Foundation
فهرسة مساهمة: Keywords: ab initio calculations; cyclohexane; isomeric triradicals; radical coupling; radical reactions
تواريخ الأحداث: Date Created: 20211117 Latest Revision: 20220104
رمز التحديث: 20221213
DOI: 10.1002/chem.202102968
PMID: 34786768
قاعدة البيانات: MEDLINE
الوصف
تدمد:1521-3765
DOI:10.1002/chem.202102968