دورية أكاديمية

Slow Recovery from Inbreeding Depression Generated by the Complex Genetic Architecture of Segregating Deleterious Mutations.

التفاصيل البيبلوغرافية
العنوان: Slow Recovery from Inbreeding Depression Generated by the Complex Genetic Architecture of Segregating Deleterious Mutations.
المؤلفون: Adams PE; Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA., Crist AB; Department of Genomes and Genetics, Institut Pasteur, Paris, France., Young EM; Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA., Willis JH; Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA., Phillips PC; Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA., Fierst JL; Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA.
المصدر: Molecular biology and evolution [Mol Biol Evol] 2022 Jan 07; Vol. 39 (1).
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Oxford University Press Country of Publication: United States NLM ID: 8501455 Publication Model: Print Cited Medium: Internet ISSN: 1537-1719 (Electronic) Linking ISSN: 07374038 NLM ISO Abbreviation: Mol Biol Evol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2003- : New York, NY : Oxford University Press
Original Publication: [Chicago, Ill.] : University of Chicago Press, [c1983-
مواضيع طبية MeSH: Inbreeding Depression*, Alleles ; Animals ; Caenorhabditis elegans/genetics ; Inbreeding ; Male ; Mutation
مستخلص: The deleterious effects of inbreeding have been of extreme importance to evolutionary biology, but it has been difficult to characterize the complex interactions between genetic constraints and selection that lead to fitness loss and recovery after inbreeding. Haploid organisms and selfing organisms like the nematode Caenorhabditis elegans are capable of rapid recovery from the fixation of novel deleterious mutation; however, the potential for recovery and genomic consequences of inbreeding in diploid, outcrossing organisms are not well understood. We sought to answer two questions: 1) Can a diploid, outcrossing population recover from inbreeding via standing genetic variation and new mutation? and 2) How does allelic diversity change during recovery? We inbred C. remanei, an outcrossing relative of C. elegans, through brother-sister mating for 30 generations followed by recovery at large population size. Inbreeding reduced fitness but, surprisingly, recovery from inbreeding at large populations sizes generated only very moderate fitness recovery after 300 generations. We found that 65% of ancestral single nucleotide polymorphisms (SNPs) were fixed in the inbred population, far fewer than the theoretical expectation of ∼99%. Under recovery, 36 SNPs across 30 genes involved in alimentary, muscular, nervous, and reproductive systems changed reproducibly across replicates, indicating that strong selection for fitness recovery does exist. Our results indicate that recovery from inbreeding depression via standing genetic variation and mutation is likely to be constrained by the large number of segregating deleterious variants present in natural populations, limiting the capacity for recovery of small populations.
(© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.)
References: Bioinformatics. 2009 Jul 15;25(14):1754-60. (PMID: 19451168)
Bioinformatics. 2014 Oct 15;30(20):2843-51. (PMID: 24974202)
Elife. 2021 Jan 11;10:. (PMID: 33427200)
Trends Ecol Evol. 1999 Aug;14(8):295-296. (PMID: 10407424)
J Evol Biol. 2019 Feb;32(2):144-152. (PMID: 30414283)
Nat Rev Genet. 2008 Nov;9(11):855-67. (PMID: 18852697)
Mol Biol Evol. 2017 Jan;34(1):174-184. (PMID: 27702776)
Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):E7317-E7326. (PMID: 27803326)
Mol Ecol Resour. 2021 Jan;21(1):93-109. (PMID: 32810339)
Mol Biol Evol. 2020 Jun 1;37(6):1790-1808. (PMID: 32077950)
Genetics. 2006 Oct;174(2):901-13. (PMID: 16951062)
Evol Lett. 2019 Sep 11;3(5):462-473. (PMID: 31636939)
Genome Res. 2010 Dec;20(12):1663-71. (PMID: 21036923)
Mol Microbiol. 2002 Oct;46(2):355-66. (PMID: 12406214)
Curr Biol. 2018 Nov 5;28(21):3487-3494.e4. (PMID: 30415705)
Bioinformatics. 2014 May 1;30(9):1236-40. (PMID: 24451626)
Genome Res. 2010 Sep;20(9):1297-303. (PMID: 20644199)
Evolution. 2023 Feb 4;77(2):394-408. (PMID: 36622723)
Nat Plants. 2019 Sep;5(9):980-990. (PMID: 31477888)
Methods Ecol Evol. 2017 Dec;8(12):1899-1909. (PMID: 29263778)
J Exp Zool. 1949 Dec;112(3):485-503. (PMID: 15404785)
Sci Adv. 2019 May 29;5(5):eaau0757. (PMID: 31149628)
Nat Rev Genet. 2009 Nov;10(11):783-96. (PMID: 19834483)
Evolution. 2007 Jun;61(6):1339-52. (PMID: 17542844)
Evol Appl. 2016 Oct 23;9(10):1205-1218. (PMID: 27877200)
Heredity (Edinb). 1994 Oct;73 ( Pt 4):363-72. (PMID: 7989216)
Nature. 1993 Dec 2;366(6454):461-4. (PMID: 8247153)
Curr Biol. 2021 Mar 8;31(5):990-1001.e5. (PMID: 33417886)
Trends Ecol Evol. 2016 Dec;31(12):940-952. (PMID: 27743611)
Evolution. 2003 May;57(5):1022-30. (PMID: 12836820)
Nat Genet. 2011 May;43(5):491-8. (PMID: 21478889)
Genetics. 2020 Apr;214(4):769-780. (PMID: 32111628)
G3 (Bethesda). 2016 Nov 8;6(11):3507-3515. (PMID: 27613752)
Evol Lett. 2020 Dec 17;5(1):33-47. (PMID: 33552534)
Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):11823-8. (PMID: 26351684)
PLoS Genet. 2017 Mar 16;13(3):e1006666. (PMID: 28301472)
Genetics. 1974 May;77(1):71-94. (PMID: 4366476)
Genet Res. 2005 Feb;85(1):47-55. (PMID: 16089035)
Fly (Austin). 2012 Apr-Jun;6(2):80-92. (PMID: 22728672)
PLoS Genet. 2015 Jun 26;11(6):e1005323. (PMID: 26114425)
Science. 2008 Feb 1;319(5863):589-94. (PMID: 18187622)
Evolution. 2021 Apr;75(4):779-793. (PMID: 33598971)
Evolution. 2011 Aug;65(8):2335-44. (PMID: 21790579)
Evolution. 1985 Jan;39(1):24-40. (PMID: 28563655)
Evolution. 2020 Mar;74(3):587-596. (PMID: 31710100)
J Gerontol A Biol Sci Med Sci. 2011 Dec;66(12):1300-8. (PMID: 21975091)
Evol Appl. 2017 May 26;10(7):731-741. (PMID: 28717392)
Genome Res. 2009 Mar;19(3):470-80. (PMID: 19204328)
Science. 2020 Nov 27;370(6520):1086-1089. (PMID: 33243888)
Science. 2009 Aug 7;325(5941):737-40. (PMID: 19661427)
Genome Biol Evol. 2014 Apr 30;6(5):1210-8. (PMID: 24787620)
Genetics. 2016 Oct;204(2):723-735. (PMID: 27542959)
PLoS Genet. 2009 Mar;5(3):e1000419. (PMID: 19283065)
Proc Natl Acad Sci U S A. 1938 Jul;24(7):253-9. (PMID: 16577841)
Nat Ecol Evol. 2021 Jun;5(6):794-807. (PMID: 33820969)
BMC Evol Biol. 2015 May 22;15:93. (PMID: 25994934)
Philos Trans R Soc Lond B Biol Sci. 2003 Jun 29;358(1434):1071-84. (PMID: 12831473)
Methods Mol Biol. 2016;1418:283-334. (PMID: 27008021)
Genetics. 2018 Sep;210(1):315-330. (PMID: 30061425)
Heredity (Edinb). 1976 Dec;37(3):341-9. (PMID: 1070483)
Genetics. 1999 Mar;151(3):921-7. (PMID: 10049911)
Genetics. 1998 Mar;148(3):1143-58. (PMID: 9539431)
Bioinformatics. 2011 Dec 15;27(24):3435-6. (PMID: 22025480)
Bioinformatics. 2010 Mar 15;26(6):841-2. (PMID: 20110278)
Mol Biol Evol. 2017 Nov 1;34(11):3023-3034. (PMID: 28961717)
Mol Biochem Parasitol. 2017 Jul;215:2-10. (PMID: 27899279)
New Phytol. 2016 Jan;209(2):600-11. (PMID: 26356869)
Genome Biol. 2015 Aug 06;16:157. (PMID: 26243257)
معلومات مُعتمدة: R01 GM102511 United States GM NIGMS NIH HHS; R35 GM131838 United States GM NIGMS NIH HHS
فهرسة مساهمة: Keywords: conservation genetics; genomics; inbreeding depression; nematode
تواريخ الأحداث: Date Created: 20211118 Date Completed: 20220331 Latest Revision: 20240822
رمز التحديث: 20240822
مُعرف محوري في PubMed: PMC8789292
DOI: 10.1093/molbev/msab330
PMID: 34791426
قاعدة البيانات: MEDLINE
الوصف
تدمد:1537-1719
DOI:10.1093/molbev/msab330