دورية أكاديمية

Three-dimensional cell-laden collagen scaffolds: From biochemistry to bone bioengineering.

التفاصيل البيبلوغرافية
العنوان: Three-dimensional cell-laden collagen scaffolds: From biochemistry to bone bioengineering.
المؤلفون: Nogueira LFB; Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), São Paulo, Brazil.; Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy., Maniglia BC; Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), São Paulo, Brazil., Buchet R; Institute for Molecular and Supramolecular Chemistry and Biochemistry, Université Claude Bernard Lyon 1, Villeurbanne, France., Millán JL; Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA., Ciancaglini P; Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), São Paulo, Brazil., Bottini M; Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.; Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA., Ramos AP; Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), São Paulo, Brazil.
المصدر: Journal of biomedical materials research. Part B, Applied biomaterials [J Biomed Mater Res B Appl Biomater] 2022 Apr; Vol. 110 (4), pp. 967-983. Date of Electronic Publication: 2021 Nov 18.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Review
اللغة: English
بيانات الدورية: Publisher: John Wiley & Sons Country of Publication: United States NLM ID: 101234238 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1552-4981 (Electronic) Linking ISSN: 15524973 NLM ISO Abbreviation: J Biomed Mater Res B Appl Biomater Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Hoboken, NJ : John Wiley & Sons, c2003-
مواضيع طبية MeSH: Bone and Bones* , Tissue Scaffolds*/chemistry, Bone Regeneration ; Collagen/chemistry ; Tissue Engineering/methods
مستخلص: The bones can be viewed as both an organ and a material. As an organ, the bones give structure to the body, facilitate skeletal movement, and provide protection to internal organs. As a material, the bones consist of a hybrid organic/inorganic three-dimensional (3D) matrix, composed mainly of collagen, noncollagenous proteins, and a calcium phosphate mineral phase, which is formed and regulated by the orchestrated action of a complex array of cells including chondrocytes, osteoblasts, osteocytes, and osteoclasts. The interactions between cells, proteins, and minerals are essential for the bone functions under physiological loading conditions, trauma, and fractures. The organization of the bone's organic and inorganic phases stands out for its mechanical and biological properties and has inspired materials research. The objective of this review is to fill the gaps between the physical and biological characteristics that must be achieved to fabricate scaffolds for bone tissue engineering with enhanced performance. We describe the organization of bone tissue highlighting the characteristics that have inspired the development of 3D cell-laden collagenous scaffolds aimed at replicating the mechanical and biological properties of bone after implantation. The role of noncollagenous macromolecules in the organization of the collagenous matrix and mineralization ability of entrapped cells has also been reviewed. Understanding the modulation of cell activity by the extracellular matrix will ultimately help to improve the biological performance of 3D cell-laden collagenous scaffolds used for bone regeneration and repair as well as for in vitro studies aimed at unravelling physiological and pathological processes occurring in the bone.
(© 2021 Wiley Periodicals LLC.)
References: Brown JL, Laurencin CT. Bone tissue engineering. Biomaterials Science: An Introduction to Materials in Medicine. 2020;1(4):1373-1388. Amsterdam: Elsevier.
Liu Y, Luo D, Wang T. Hierarchical structures of bone and bioinspired bone tissue engineering. Small. 2016;12(34):4611-4632.
Kołodziejska B, Kaflak A, Kolmas J. Biologically inspired collagen/apatite composite biomaterials for potential use in bone tissue regeneration-a review. Materials (Basel). 2020;13:1748.
Du Y, Guo JL, Wang J, Mikos AG, Zhang S. Hierarchically designed bone scaffolds: from internal cues to external stimuli. Biomaterials. 2019;218:119334-119354.
Wegst UGK, Bai H, Saiz E, Tomsia AP, Ritchie RO. Bioinspired structural materials. Nat Mater. 2015;14:23-36.
de Wildt BWM, Ansari S, Sommerdijk NAJM, Ito K, Akiva A, Hofmann S. From bone regeneration to three-dimensional in vitro models: tissue engineering of organized bone extracellular matrix. Curr Opin Biomed Eng. 2019;10:107-115.
Pereira HF, Cengiz IF, Silva FS, Reis RL, Oliveira JM. Scaffolds and coatings for bone regeneration. J Mater Sci Mater med. Springer US. 2020;31:27.
Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact Mater Elsevier Ltd. 2017;2:224-247.
Lopes D, Martins-Cruz C, Oliveira MB, Mano JF. Bone physiology as inspiration for tissue regenerative therapies. Biomaterials. 2018;185:240-275.
Tovani CB, Oliveira TM, Soares MPR, et al. Strontium calcium phosphate nanotubes as bioinspired building blocks for bone regeneration. ACS Appl Mater Interfaces. 2020;12:43422-43434.
Rasheed T, Bilal M, Zhao Y, Raza A, Shah SZH, Iqbal HMN. Physiochemical characteristics and bone/cartilage tissue engineering potentialities of protein-based macromolecules - a review. Int J Biol Macromol. 2019;121:13-22.
Qasim M, Chae DS, Lee N. Advancements and frontiers in nano-based 3d and 4d scaffolds for bone and cartilage tissue engineering. Int J Nanomedicine. 2019;14:4333-4351.
Mansoorifar A, Subbiah R, Balbinot G, Parthiban SP, Bertassoni LE. Embedding cells within nanoscale, rapidly mineralizing hydrogels: a new paradigm to engineer cell-laden bone-like tissue. J Struct Biol. Elsevier Inc. 2020;212:107636.
Reznikov N, Shahar R, Weiner S. Bone hierarchical structure in three dimensions. Acta Biomater. Acta Materialia Inc. 2014;10:3815-3826.
Liou S-C, Chen S-Y, Lee H-Y, Bow J-S. Structural characterization of nano-sized calcium deficient apatite powders. Biomaterials. 2004;25:189-196.
Li P, Ducheyne P. Quasi-biological apatite film induced by titanium in a simulated body fluid. J Biomed Mater Res. 1998;41:341-348.
Griffanti G, Nazhat SN. Dense fibrillar collagen-based hydrogels as functional osteoid-mimicking scaffolds. Int Mater Rev Taylor & Francis. 2020;0:1-20.
Scott RA, Panitch A. Glycosaminoglycans in biomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5:388-398.
Kadler KE, Hill A, Canty-Laird EG. Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr Opin Cell Biol. 2008;20:495-501.
Icer MA, Gezmen-Karadag M. The multiple functions and mechanisms of osteopontin. Clin Biochem. 2018;59:17-24.
Ganss B, Kim RH, Sodek J. Bone Sialoprotein. Crit Rev Oral Biol med. 1999;10:79-98.
Chen Y, Lee K, Yang Y, Kawazoe N, Chen G. PLGA-collagen-ECM hybrid meshes mimicking stepwise osteogenesis and their influence on the osteogenic differentiation of hMSCs. Biofab IOP Publ. 2020;12:1-14.
Pajarinen J, Lin T, Gibon E, et al. Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials. 2019;196:80-89.
Fidler AL, Boudko SP, Rokas A, Hudson BG. The triple helix of collagens - an ancient protein structure that enabled animal multicellularity and tissue evolution. J Cell Sci. 2018;131(7):1-15.
Radhakrishnan S, Nagarajan S, Bechelany M, Kalkura SN. Collagen based biomaterials for tissue engineering applications: a review. Processes and Phenomena on the Boundary Between Biogenic and Abiogenic Nature. 2020;(1):3-22. Switzerland: Springer.
Lin K, Zhang D, Macedo MH, Cui W, Sarmento B, Shen G. Advanced collagen-based biomaterials for regenerative biomedicine. Adv Funct Mater. 2019;29:1-16.
Nudelman F, Lausch AJ, Sommerdijk NAJM, Sone ED. In vitro models of collagen biomineralization. J Struct Biol. 2013;183:258-269.
Ilmer M, Karow M, Geissler C, Jochum M, Neth P. Human osteoblast-derived factors induce early Osteogenic markers in human Mesenchymal stem cells. Tissue Eng Part A. 2009;15(9):2397-2409.
Kmiecik G, Spoldi V, Silini A, Parolini O. Current view on osteogenic differentiation potential of mesenchymal stromal cells derived from placental tissues. Stem Cell Rev Reports. 2015;11:570-585.
Prideaux M, Findlay DM, Atkins GJ. Osteocytes: the master cells in bone remodelling. Curr Opin Pharmacol. 2016;28:24-30.
Lin M, Liu H, Deng J, et al. Carboxymethyl chitosan as a polyampholyte mediating intrafibrillar mineralization of collagen via collagen/ACP self-assembl. J Mater Sci Technol. 2019;35:1894-1905.
Wu LNY, Genge BR, Lloyd GC, Wuthier RE. Collagen-binding proteins in collagenase-released matrix vesicles from cartilage. Interaction between matrix vesicles proteins and different types of collagen. J Biol Chem. 1991;266:1195-1203.
Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677-689.
Bottini M, Mebarek S, Anderson KL, et al. Matrix vesicles from chondrocytes and osteoblasts: their biogenesis, properties, functions and biomimetic models. Biochim Biophys Acta - Gen Subj. 2018;1862:532-546.
Plaut JS, Strzelecka-Kiliszek A, Bozycki L, et al. Quantitative atomic force microscopy provides new insight into matrix vesicle mineralization. Arch Biochem Biophys. 2019;667:14-21.
Wuthier RE. Mechanism of De novo mineral formation by matrix vesicles. Connect Tissue Res. 1989;22:653-659.
Anderson HC. Matrix vesicles and calcification. Curr Rheumatol Rep. 2003;5:222-226.
Cruz MAE, Ferreira CR, Tovani CB, et al. Phosphatidylserine controls calcium phosphate nucleation and growth on lipid monolayers: a physicochemical understanding of matrix vesicle-driven biomineralization. J Struct Biol Elsevier. 2020;212:107607.
Zhang X, Wang Y, Manh N, Wang H, Zhong X, Li C. Synergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects. Int J Nanomed. 2016;11:2053.
Nair AK, Gautieri A, Buehler MJ. Role of Intrafibrillar collagen mineralization in defining the compressive properties of nascent bone. Biomacromolecules. 2014;15:2494-2500.
Schwarcz HP, Abueidda D, Jasiuk I. The ultrastructure of bone and its relevance to mechanical properties. Front Phys. 2017;5(39):1-13.
Li J, Chen M, Fan X, Zhou H. Recent advances in bioprinting techniques: approaches, applications and future prospects. J Transl med. 2016;14:271.
Shin K, Acri T, Geary S, Salem AK. Biomimetic mineralization of biomaterials using simulated body fluids for bone tissue engineering and regenerative medicine. Tissue Eng Part A. 2017;23:1169-1180.
Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW, Luyten FP, Picart C. Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials. 2018;180:143-162.
Iaquinta M, Mazzoni E, Manfrini M, et al. Innovative biomaterials for bone regrowth. Int J Mol Sci. 2019;20:618.
Wan Z, Zhang P, Liu Y, Lv L, Zhou Y. Four-dimensional bioprinting: current developments and applications in bone tissue engineering. Acta Biomater. 2020;101:26-42.
Qu H, Fu H, Han Z, Sun Y. Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv. 2019;9:26252-26262.
Hench LL, Thompson I. Twenty-first century challenges for biomaterials. J R Soc Interface. 2010;7:S379-S391.
Paterlini TT, Nogueira LFB, Tovani CB, Cruz MAE, Derradi R, Ramos AP. The role played by modified bioinspired surfaces in interfacial properties of biomaterials. Biophys Rev. 2017;9:683-698.
de Faria AN, Cruz MAE, Ruiz GCM, Zancanela DC, Ciancaglini P, Ramos AP. Different compact hybrid Langmuir-Blodgett-film coatings modify biomineralization and the ability of osteoblasts to grow. J Biomed Mater Res - Part B Appl Biomater. 2018;106:2524-2534.
Cruz MAE, Ruiz GCM, Faria AN, et al. Calcium carbonate hybrid coating promotes the formation of biomimetic hydroxyapatite on titanium surfaces. Appl Surf Sci. 2016;370:459-468.
Andrade MAR, Derradi R, Simão AMS, et al. Is alkaline phosphatase biomimeticaly immobilized on titanium able to propagate the biomineralization process? Arch Biochem Biophys. 2019;663:192-198.
Ramos AP, Doro FG, Tfouni E, Gonçalves RR, Zaniquelli MED. Surface modification of metals by calcium carbonate thin films on a layer-by-layer polyelectrolyte matrix. Thin Solid Films. 2008;516(10), 3256-3262.
Tovani CB, Zancanela DC, Faria AN, Ciancaglini P, Ramos AP. Bio-inspired synthesis of hybrid tube-like structures based on CaCO3 and type I-collagen. RSC Adv. 2016;6:90509-90515.
Cruz MAE, Soares MPR, Pazin W, et al. Interface-driven Sr-morin complexation at Langmuir monolayers for bioactive coating design. Coll Surf B Biointerfaces Elsevier. 2019;181:856-863.
Ramos AP, Nobre TM, Montoro LA, Zaniquelli MED. Calcium carbonate particle growth depending on coupling among adjacent layers in hybrid LB/LbL films. J Phys Chem B. 2008;112:14648-14654.
de Souza ID, Cruz MAE, de Faria AN, et al. Formation of carbonated hydroxyapatite films on metallic surfaces using dihexadecyl phosphate-LB film as template. Coll Surf B Biointerfaces ElsevierColloids Surfaces B Biointerfaces Elsevier BV. 2014;118:31-40.
Ruiz GCM, Cruz MAE, Faria AN, Zancanela DC, Ciancaglini P, Ramos AP. Biomimetic collagen/phospholipid coatings improve formation of hydroxyapatite nanoparticles on titanium. Mater Sci Eng C. 2017;77:102-110.
Esch TH, Barbirato DDS, Fogacci MF, Magro ODO, Barros MCMD. Tissue healing with polypropylene membrane used as conventional guided bone regeneration and exposed to the oral cavity for post-dental extraction: a case report. Rio Janeiro Dent J. 2018;3:52-56.
Zhang D, Wu X, Chen J, Lin K. The development of collagen based composite scaffolds for bone regeneration. Bioact Mater. 2018;3:129-138.
Nicolas J, Magli S, Rabbachin L, Sampaolesi S, Nicotra F, Russo L. 3D extracellular matrix mimics: fundamental concepts and role of materials chemistry to influence stem cell fate. Biomacromolecules. 2020;21:1968-1994.
Nudelman F, Pieterse K, George A, et al. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater. 2010;9:1004-1009.
Giraud Guille MM, Helary C, Vigier S, Nassif N. Dense fibrillar collagen matrices for tissue repair. Soft Matter. 2010;6:4963-4967.
Tampieri A, Celotti G, Landi E, Sandri M, Roveri N, Falini G. Biologically inspired synthesis of bone-like composite: self-assembled collagen fibers/hydroxyapatite nanocrystals. J Biomed Mater Res - Part A. 2003;67:618-625.
El-Fiqi A, Kim J-H, Kim H-W. Novel bone-mimetic nanohydroxyapatite/collagen porous scaffolds biomimetically mineralized from surface silanized mesoporous nanobioglass/collagen hybrid scaffold: physicochemical, mechanical and in vivo evaluations. Mater Sci Eng C Elsevier. 2020;110:110660.
Ehrmann RL, Gey GO. The growth of cells on a transparent gel of reconstituted rat-tail. J Natl Cancer Inst. 1956;16:1375-1403.
Heino J. The collagen receptor integrins have distinct ligand recognition and signaling functions. Matrix Biol. 2000;19:319-323.
Zeltz C, Gullberg D. The integrin-collagen connection - a glue for tissue repair? J Cell Sci. 2016;129:653-664.
Barczyk M, Carracedo S, Gullberg D. Integrins. Cell Tissue Res. 2010;339:269-280.
Tuckwell S, Humphries J. Molecular and cellular biology of integrins. Crit Rev Oncol Hematol. 1993;8428:149-171.
Akiyama SK, Yamada M. Cell surface receptors for extracellular matrix components. Biochim Biophys Acta. 1990;1031(1):91-110.
Bolean M, Izzi B, van Kerckhoven S, et al. Matrix vesicle biomimetics harboring Annexin A5 and alkaline phosphatase bind to the native collagen matrix produced by mineralizing vascular smooth muscle cells. Biochim Biophys Acta - Gen Subj Elsevier. 2020;1864:129629.
Veschi EA, Bolean M, Strzelecka-kiliszek A, et al. Localization of annexin A6 in matrix vesicles during physiological mineralization. Int J Mol Sci. 2020;21:1-16.
Shapiro F. Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Eur. Cells Mater. 2008;15:53-76.
Florencio-Silva R, Sasso GRDS, Sasso-Cerri E, Simões MJ, Cerri PS. Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int. 2015;2015:1-17.
Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012;40:363-408.
Tortelli F, Cancedda R. Three-dimensional cultures of osteogenic and chondrogenic cells: a tissue engineering approach to mimic bone and cartilage in vitro. Eur Cell Mater. 2009;30(17):1-14.
Breathwaite EK, Weaver JR, Murchison AC, Treadwell ML, Odanga JJ, Lee JB. Scaffold-free bioprinted osteogenic and chondrogenic systems to model osteochondral physiology. Biomed Mater. 2019;14:065010.
Thrivikraman G, Athirasala A, Gordon R, et al. Rapid fabrication of vascularized and innervated cell-laden bone models with biomimetic intrafibrillar collagen mineralization. Nat Commun. Springer US. 2019;10:3520.
Wang Y, Silvent J, Robin M, et al. Controlled collagen assembly to build dense tissue-like materials for tissue engineering. Soft Matter. 2011;7:9659.
Sheykhhasan M, Ghiasi M. Key transcription factors involved in the differentiation of mesenchymal stem cells: review article. Tehran Univ med J. 2017;75:621-631.
Teufel S, Hartmann C. Wnt-signaling in skeletal development. Curr Top Dev Bio. 2019;133:235-279.
Juhász T, Helgadottir SL, Tamás A, Reglődi D, Zákány R. PACAP and VIP signaling in chondrogenesis and osteogenesis. Peptides. 2015;66:51-57.
Strzelecka-Kiliszek A, Mebarek S, Roszkowska M, Buchet R, Magne D, Pikula S. Functions of rho family of small GTPases and rho-associated coiled-coil kinases in bone cells during differentiation and mineralization. Biochim Biophys Acta - Gen Subj. 2017;1861:1009-1023.
Guo X, Wang X-F. Signaling cross-talk between TGF-β/BMP and other pathways. Cell Res. 2009;19:71-88.
Farrell E, O'Brien FJ, Doyle P, et al. A collagen-glycosaminoglycan scaffold supports adult rat mesenchymal stem cell differentiation along osteogenic and chondrogenic routes. Tissue Eng. 2006;12:459-468.
Cheng HW, Yuan MT, Li CW, Chan BP. Cell-derived matrices (CDM)-methods, challenges and applications. Methods Cell Biol. 2020;156:235-258.
Gosset M, Berenbaum F, Thirion S, Jacques C. Primary culture and phenotyping of murine chondrocytes. Nat Protoc. 2008;3:1253-1260.
Caron MMJ, Emans PJ, Coolsen MME, et al. Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures. Osteoarthr Cartil. 2012;20:1170-1178.
Ahmed M, Ramos TADS, Damanik F, et al. A combinatorial approach towards the design of nanofibrous scaffolds for chondrogenesis. Sci Rep. 2015;5:14804.
Lin Z, Willers C, Xu J, Zheng MH. The chondrocyte: biology and clinical application. Tissue Eng. 2006;12:1971-1984.
van Susante JLC, Buma P, van Osch GJ, et al. Culture of chondrocytes in alginate and collagen carrier gels. Acta Orthop. 1995;66:549-556.
Albrecht C, Tichy B, Nürnberger S, et al. Gene expression and cell differentiation in matrix-associated chondrocyte transplantation grafts: a comparative study. Osteoarthr Cartil. 2011;19:1219-1227.
Baker BM, Chen CS. Deconstructing the third dimension - how 3D culture microenvironments alter cellular cues. J Cell Sci. 2012;125:3015-3024.
Foldager CB, Advances in autologous chondrocyte implantation and related techniques for cartilage repair. Dan Med J. 2013;60(4):B4600.
Dennis SC, Berkland CJ, Bonewald LF, Detamore MS. Endochondral ossification for enhancing bone regeneration: converging native extracellular matrix biomaterials and developmental engineering in vivo. Tissue Eng Part B Rev. 2015;21(3):247-266.
Nazempour A, Van Wie BJ. Chondrocytes, Mesenchymal stem cells, and their combination in articular cartilage regenerative medicine. Ann Biomed Eng. 2016;44:1325-1354.
Zou J, Bai B, Yao Y. Progress of co-culture systems in cartilage regeneration. Expert Opin Biol Ther. 2018;18:1151-1158.
Liu M, Zeng X, Ma C, et al. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res. 2017;5:17014.
Stagnaro P, Schizzi I, Utzeri R, Marsano E, Castellano M. Alginate-polymethacrylate hybrid hydrogels for potential osteochondral tissue regeneration. Carbohydr Polym Elsevier. 2018;185:56-62.
Nourmohammadi J, Roshanfar F, Farokhi M, Haghbin NM. Silk fibroin/kappa-carrageenan composite scaffolds with enhanced biomimetic mineralization for bone regeneration applications. Mater Sci Eng C. Elsevier B.V. 2017;76:951-958.
Bhardwaj N, Singh YP, Mandal BB. Silk fibroin scaffold-based 3D co-culture model for modulation of Chondrogenesis without hypertrophy via reciprocal cross-talk and paracrine signaling. ACS Biomater Sci Eng. 2019;5:5240-5254.
Bell E, Ivarsson B, Merrill C. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci U S A. 1979;76:1274-1278.
Coyac BR, Chicatun F, Hoac B, et al. Mineralization of dense collagen hydrogel scaffolds by human pulp cells. J Dent Res. 2013;92:648-654.
Neves MI, Araújo M, Moroni L, da Silva RMP, Barrias CC. Glycosaminoglycan-inspired biomaterials for the development of bioactive hydrogel networks. Molecules. 2020;25:978.
Walimbe T, Panitch A. Best of both hydrogel worlds: harnessing bioactivity and tunability by incorporating glycosaminoglycans in collagen hydrogels. Bioengineering. 2020;7:1-24.
Rico-Llanos GA, Borrego-González S, Moncayo-Donoso M, Becerra J, Visser R. Collagen type I biomaterials as scaffolds for bone tissue engineering. Polymers (Basel). 2021;13:599.
Geanaliu-Nicolae R-E, Andronescu E. Blended natural support materials-collagen based hydrogels used in biomedicine. Materials (Basel). 2020;13:5641.
Irawan V, Sung T-C, Higuchi A, Ikoma T. Collagen scaffolds in cartilage tissue engineering and relevant approaches for future development. Tissue Eng Regen Med. 2018;15:673-697.
Liu Y, Kuang B, Rothrauff BB, Tuan RS, Lin H. Robust bone regeneration through endochondral ossification of human mesenchymal stem cells within their own extracellular matrix. Biomaterials. 2019;218:119336.
Sánchez-Cid P, Jiménez-Rosado M, Perez-Puyana V, Guerrero A, Romero A. Rheological and microstructural evaluation of collagen-based scaffolds crosslinked with fructose. Polymers (Basel). 2021;13:1-11.
Silvent J, Nassif N, Helary C, Azaïs T, Sire JY, Guille MMG. Collagen osteoid-like model allows kinetic gene expression studies of non-collagenous proteins in relation with mineral development to understand bone biomineralization. Zeugolis D Editor PLoS One. 2013;8:e57344.
França CM, Thrivikraman G, Athirasala A, Tahayeri A, Gower LB, Bertassoni LE. The influence of osteopontin-guided collagen intrafibrillar mineralization on pericyte differentiation and vascularization of engineered bone scaffolds. J Biomed Mater Res - Part B Appl Biomater. 2019;107:1522-1532.
Lee J, Kim G. Three-dimensional hierarchical Nanofibrous collagen scaffold fabricated using fibrillated collagen and Pluronic F-127 for regenerating bone tissue. ACS Appl Mater Interfaces. 2018;10:35801-35811.
Lallier TE, Yukna R, Moses RL. Extracellular matrix molecules improve periodontal ligament cell adhesion to Anorganic bone matrix. J Dent Res. 2001;80:1748-1752.
Jacobs T, Morent R, De Geyter N, Dubruel P, Leys C. Plasma surface modification of biomedical polymers: influence on cell-material interaction. Plasma Chem Plasma Process. 2012;32:1039-1073.
Kruger TE, Miller AH, Wang J. Collagen scaffolds in bone Sialoprotein-mediated bone regeneration. Sci World J. 2013;2013:1-6.
Mizuno M, Imai T, Fujisawa R, Tani H, Kuboki Y. Bone Sialoprotein (BSP) is a crucial factor for the expression of Osteoblastic phenotypes of bone marrow cells cultured on type I collagen matrix. Calcif Tissue Int. 2000;66:388-396.
Schmidt JR, Kliemt S, Preissler C, et al. Osteoblast-released matrix vesicles, regulation of activity and composition by sulfated and non-sulfated Glycosaminoglycans. Mol Cell Proteomics. 2016;15:558-572.
Vaughan-Thomas A, Young RD, Phillips AC, Duance VC. Characterization of type XI collagen-glycosaminoglycan interactions. J Biol Chem. 2001;276:5303-5309.
Bi Y, Patra P, Faezipour M. Structure of collagen-glycosaminoglycan matrix and the influence to its integrity and stability. 36th Annu Int Conf IEEE Eng med Biol Soc EMBC. 2014;2014:3949-3952.
Ryan AJ, Gleeson JP, Matsiko A, Thompson EM, O'Brien FJ. Effect of different hydroxyapatite incorporation methods on the structural and biological properties of porous collagen scaffolds for bone repair. J Anat. 2015;227:732-745.
Alhag M, Farrell E, Toner M, Claffey N, Lee TC, O'Brien F. Evaluation of early healing events around mesenchymal stem cell-seeded collagen-glycosaminoglycan scaffold. An experimental study in Wistar rats. Oral Maxillofac Surg. 2011;15:31-39.
Keogh MB, O'Brien FJ, Daly JS. A novel collagen scaffold supports human osteogenesis - applications for bone tissue engineering. Cell Tissue Res. 2010;340:169-177.
Farrell E, Byrne EM, Fischer J, et al. A comparison of the osteogenic potential of adult rat mesenchymal stem cells cultured in 2-D and on 3-D collagen glycosaminoglycan scaffolds. Technol Heal Care. 2007;15:19-31.
Byrne EM, Farrell E, McMahon LA, et al. Gene expression by marrow stromal cells in a porous collagen- glycosaminoglycan scaffold is affected by pore size and mechanical stimulation. J Mater Sci Mater med. 2008;19:3455-3463.
Rother S, Salbach-Hirsch J, Moeller S, et al. Bioinspired collagen/glycosaminoglycan-based cellular microenvironments for tuning Osteoclastogenesis. ACS Appl Mater Interfaces. 2015;7:23787-23797.
Harley BA, Lynn AK, Wissner-Gross Z, Bonfield W, Yannas IV, Gibson LJ. Design of a multiphase osteochondral scaffold. II. Fabrication of a mineralized collagen-glycosaminoglycan scaffold. J Biomed Mater Res - Part A. 2010;92:1066-1077.
Zhou Q, Ren X, Bischoff D, et al. Nonmineralized and mineralized collagen scaffolds induce differential Osteogenic signaling pathways in human Mesenchymal stem cells. Adv Healthc Mater. 2017;6:1700641.
Andersen T, Auk-Emblem P, Dornish M. 3D Cell Culture in Alginate Hydrogels. Microarrays. 2015;4:133-161.
Piras CC, Smith DK. Multicomponent polysaccharide alginate-based bioinks. J Mater Chem B. 2020;8:8171-8188.
Popa EG, Caridade SG, Mano JF, Reis RL, Gomes ME. Chondrogenic potential of injectable k-carrageenan hydrogel with encapsulated adipose stem cells for cartilage tissue-engineering applications. J Tissue Eng Regen med. 2015;9:550-563.
González Ocampo JI, Machado de Paula MM, Bassous NJ, Lobo AO, Ossa Orozco CP, Webster TJ. Osteoblast responses to injectable bone substitutes of kappa-carrageenan and nano hydroxyapatite. Acta Biomater. 2019;83:425-434.
Li J, Yang B, Qian Y, et al. Iota-carrageenan/chitosan/gelatin scaffold for the osteogenic differentiation of adipose-derived MSCs in vitro. J Biomed Mater Res - Part B Appl Biomater. 2015;103:1498-1510.
Goonoo N, Khanbabaee B, Steuber M, et al. κ-Carrageenan enhances the biomineralization and Osteogenic differentiation of electrospun Polyhydroxybutyrate and Polyhydroxybutyrate Valerate fibers. Biomacromolecules. 2017;18:1563-1573.
Kassab Z, Aziz F, Hannache H, Ben Youcef H, El Achaby M. Improved mechanical properties of k-carrageenan-based nanocomposite films reinforced with cellulose nanocrystals. Int J Biol Macromol. 2019;123:1248-1256.
Feng W, Feng S, Tang K, He X, Jing A, Liang G. A novel composite of collagen-hydroxyapatite/kappa-carrageenan. J Alloys Compd. 2017;693:482-489.
Piculell L, Nilsson S, Ström P. On the specificity of the binding of cations to carrageenans: Counterion N.M.R. spectroscopy in mixed carrageenan systems. Carbohydr Res. 1989;188:121-135.
Yuguchi Y, Urakawa H, Kajiwara K. Structural characteristics of carrageenan gels: various types of counter ions. Food Hydrocoll. 2003;17:481-485.
Nogueira LFB, Maniglia BC, Pereira LS, Tapia-Blácido DR, Ramos AP. Formation of carrageenan-CaCO 3 bioactive membranes. Mater Sci Eng C. 2016;58:1-6.
Nogueira LFB, Maniglia BC, Blácido DRT, Ramos AP. Organic-inorganic collagen/iota-carrageenan/hydroxyapatite hybrid membranes are bioactive materials for bone regeneration. J Appl Polym Sci. 2019;136:48004.
Hirenkumar M, Steven S. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 2011;3:1377-1397.
Yang X, Li Y, He W, Huang Q, Zhang R, Feng Q. Hydroxyapatite/collagen coating on PLGA electrospun fibers for osteogenic differentiation of bone marrow mesenchymal stem cells. J Biomed Mater Res - Part A. 2018;106:2863-2870.
Kwak S, Haider A, Gupta KC, Kim S, Kang IK. Micro/Nano multilayered scaffolds of PLGA and collagen by alternately electrospinning for bone tissue engineering. Nanoscale Res Lett. 2016;11:323.
Ngiam M, Liao S, Patil AJ, Cheng Z, Chan CK, Ramakrishna S. The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering. Bone Elsevier Inc. 2009;45:4-16.
Liao S, Wang W, Uo M, et al. A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration. Biomaterials. 2005;26:7564-7571.
Holderegger C, Schmidlin P, Weber F, Mohn D. Preclinical in vivo performance of novel biodegradable, electrospun poly(lactic acid) and poly(lactic-co-glycolic acid) Nanocomposites: a review. Materials (Basel). 2015;8:4912-4931.
Chen Y, Lee K, Kawazoe N, Yang Y, Chen G. PLGA-collagen-ECM hybrid scaffolds functionalized with biomimetic extracellular matrices secreted by mesenchymal stem cells during stepwise osteogenesis- co -adipogenesis. J Mater Chem B. 2019;7:7195-7206.
Yang W, Both S, van Osch G, Wang Y, Jansen J, Yang F. Performance of different three-dimensional scaffolds for in vivo endochondral bone generation. Eur Cells Mater. 2014;27:350-364.
Dai W, Kawazoe N, Lin X, Dong J, Chen G. The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering. Biomaterials Elsevier Ltd. 2010;31:2141-2152.
Sargeant TD, Desai AP, Banerjee S, Agawu A, Stopek JB. An in situ forming collagen-PEG hydrogel for tissue regeneration. Acta biomater. Acta Materialia Inc. 2012;8:124-132.
Chenyu C, Deng J, Hou Y, et al. Application of PEG and EGCG modified collagen-base membrane to promote osteoblasts proliferation. Mater Sci Eng C Elsevier BV. 2017;76:31-36.
Schroeder ME, Gonzalez Rodriguez A, Speckl KF, et al. Collagen networks within 3D PEG hydrogels support valvular interstitial cell matrix mineralization. Acta Biomater Elsevier Ltd. 2021;119:197-210.
Cidonio G, Cooke M, Glinka M, Dawson JI, Grover L, Oreffo ROC. Printing bone in a gel: using nanocomposite bioink to print functionalised bone scaffolds. Mater Today Bio Elsevier Ltd. 2019;4:100028.
Jang J, Park JY, Gao G, Cho D-W. Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics. Biomater Elsevier BV. 2018;156:88-106.
Koski C, Bose S. Effects of amylose content on the mechanical properties of starch-hydroxyapatite 3D printed bone scaffolds. Addit Manuf Elsevier. 2019;30:100817.
Montalbano G, Borciani G, Cerqueni G, et al. Collagen hybrid formulations for the 3D printing of nanostructured bone scaffolds: An optimized Genipin-crosslinking strategy. Nanomaterials. 2020;10:1681.
Mahendiran B, Muthusamy S, Sampath S, et al. Recent trends in natural polysaccharide based bioinks for multiscale 3D printing in tissue regeneration: a review. Int J Biol Macromol. 2021;183:564-588.
Sharifzadeh G, Hosseinkhani H. Biomolecule-responsive hydrogels in medicine. Adv Healthc Mater. 2017;6:1700801.
Pugliese R, Beltrami B, Regondi S, Lunetta C. Polymeric biomaterials for 3D printing in medicine: An overview. Ann 3D Print med. 2021;2:100011.
Yin J, Yan M, Wang Y, Fu J, Suo H. 3D bioprinting of low-concentration cell-laden gelatin methacrylate (GelMA) bioinks with a two-step cross-linking strategy. ACS Appl Mater Interfaces. 2018;10:6849-6857.
Olegovich Osidak E, Igorevich Kozhukhov V, Sergeevna Osidak M, Petrovich DS. Collagen as bioink for bioprinting: a comprehensive review. Int J Bioprint. 2020;6:1-10.
Heid S, Boccaccini AR. Advancing bioinks for 3D bioprinting using reactive fillers: a review. Acta Biomater. Elsevier Ltd. 2020;113:1-22.
Marques CF, Diogo GS, Pina S, Oliveira JM, Silva TH, Reis RL. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review. J Mater Sci Mater med. Springer US. 2019;30:32.
Bergamonti L, Bergonzi C, Graiff C, Lottici PP, Bettini R, Elviri L. 3D printed chitosan scaffolds: a new TiO2 support for the photocatalytic degradation of amoxicillin in water. Water res. Elsevier Ltd. 2019;163:114841.
Ergul NM, Unal S, Kartal I, et al. 3D printing of chitosan/ poly(vinyl alcohol) hydrogel containing synthesized hydroxyapatite scaffolds for hard-tissue engineering. Polym Test Elsevier. 2019;79:106006.
Petta D, D'Amora U, Ambrosio L, Grijpma DW, Eglin D, D'Este M. Hyaluronic acid as a bioink for extrusion-based 3D printing. Biofabrication. 2020;12:032001.
Ji S, Guvendiren M. Recent advances in bioink design for 3D bioprinting of tissues and organs. Front Bioeng. Biotechnol. 2017;5.
Hong S, Sycks D, Chan HF, et al. 3D printing: 3D printing of highly stretchable and tough hydrogels into complex, Cellularized structures (Adv. Mater. 27/2015). Adv Mater. 2015;27:4034-4034.
Mazzocchi A, Devarasetty M, Huntwork R, Soker S, Skardal A. Optimization of collagen type I-hyaluronan hybrid bioink for 3D bioprinted liver microenvironments. Biofabrication. 2018;11:015003.
Alcala-Orozco CR, Mutreja I, Cui X, et al. Design and characterisation of multi-functional strontium-gelatin nanocomposite bioinks with improved print fidelity and osteogenic capacity. Bioprinting. 2020;18:e00073.
Suo H, Zhang J, Xu M, Wang L. Low-temperature 3D printing of collagen and chitosan composite for tissue engineering. Mater Sci Eng C. 2021;123:111963.
Kim G, Ahn S, Yoon H, Kim Y, Chun W. A cryogenic direct-plotting system for fabrication of 3D collagen scaffolds for tissue engineering. J Mater Chem. 2009;19:8817.
Ying R-L, Sun R-X, Li Q, Fu C, Chen K-Z. Synthesis of ultralong hydroxyapatite micro/nanoribbons and their application as reinforcement in collagen scaffolds for bone regeneration. Ceram Int. 2019;45:5914-5921.
Silvent J, Nassif N, Helary C, Azaïs T, Sire JY, Guille MMG. Collagen osteoid-like model allows kinetic gene expression studies of non-collagenous proteins in relation with mineral development to understand bone biomineralization. PLoS One. 2013;8:1-10.
Lynn AK, Yannas IV, Bonfield W. Antigenicity and immunogenicity of collagen. J Biomed Mater Res. 2004;71B:343-354.
فهرسة مساهمة: Keywords: biomaterials; biomineralization; bone; collagen; scaffolds; tissue engineering
المشرفين على المادة: 9007-34-5 (Collagen)
تواريخ الأحداث: Date Created: 20211118 Date Completed: 20220331 Latest Revision: 20220401
رمز التحديث: 20240628
DOI: 10.1002/jbm.b.34967
PMID: 34793621
قاعدة البيانات: MEDLINE
الوصف
تدمد:1552-4981
DOI:10.1002/jbm.b.34967