دورية أكاديمية

Long-read metagenomics of soil communities reveals phylum-specific secondary metabolite dynamics.

التفاصيل البيبلوغرافية
العنوان: Long-read metagenomics of soil communities reveals phylum-specific secondary metabolite dynamics.
المؤلفون: Van Goethem MW; Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA., Osborn AR; DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA., Bowen BP; Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA., Andeer PF; Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA., Swenson TL; Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA.; Labcorp Drug Development, Covance, Madison, WI, USA., Clum A; DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA., Riley R; DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA., He G; DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA., Koriabine M; DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA., Sandor L; DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA., Yan M; DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA., Daum CG; DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA., Yoshinaga Y; DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA., Makhalanyane TP; Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genomics and Microbiology, University of Pretoria, Lynnwood Rd, Hatfield, Pretoria, 0028, South Africa., Garcia-Pichel F; Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, USA.; School of Life Sciences, Arizona State University, Tempe, AZ, USA., Visel A; DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA., Pennacchio LA; DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA., O'Malley RC; Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA.; DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA., Northen TR; Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA. TRNorthen@lbl.gov.; DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA. TRNorthen@lbl.gov.
المصدر: Communications biology [Commun Biol] 2021 Nov 18; Vol. 4 (1), pp. 1302. Date of Electronic Publication: 2021 Nov 18.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group UK Country of Publication: England NLM ID: 101719179 Publication Model: Electronic Cited Medium: Internet ISSN: 2399-3642 (Electronic) Linking ISSN: 23993642 NLM ISO Abbreviation: Commun Biol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London, United Kingdom : Nature Publishing Group UK, [2018]-
مواضيع طبية MeSH: Metagenome* , Secondary Metabolism* , Soil Microbiology*, Bacteria/*metabolism , Microbiota/*genetics, Bacteria/genetics ; Metagenomics ; Multigene Family ; Utah
مستخلص: Microbial biosynthetic gene clusters (BGCs) encoding secondary metabolites are thought to impact a plethora of biologically mediated environmental processes, yet their discovery and functional characterization in natural microbiomes remains challenging. Here we describe deep long-read sequencing and assembly of metagenomes from biological soil crusts, a group of soil communities that are rich in BGCs. Taking advantage of the unusually long assemblies produced by this approach, we recovered nearly 3,000 BGCs for analysis, including 712 full-length BGCs. Functional exploration through metatranscriptome analysis of a 3-day wetting experiment uncovered phylum-specific BGC expression upon activation from dormancy, elucidating distinct roles and complex phylogenetic and temporal dynamics in wetting processes. For example, a pronounced increase in BGC transcription occurs at night primarily in cyanobacteria, implicating BGCs in nutrient scavenging roles and niche competition. Taken together, our results demonstrate that long-read metagenomic sequencing combined with metatranscriptomic analysis provides a direct view into the functional dynamics of BGCs in environmental processes and suggests a central role of secondary metabolites in maintaining phylogenetically conserved niches within biocrusts.
(© 2021. The Author(s).)
References: Milshteyn, A., Schneider, J. S. & Brady, S. F. Mining the metabiome: identifying novel natural products from microbial communities. Chem. Biol. 21, 1211–1223 (2014). (PMID: 25237864417168610.1016/j.chembiol.2014.08.006)
Rutledge, P. J. & Challis, G. L. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat. Rev. Microbiol. 13, 509–523 (2015). (PMID: 2611957010.1038/nrmicro3496)
Dittmann, E., Gugger, M., Sivonen, K. & Fewer, D. P. Natural product biosynthetic diversity and comparative genomics of the cyanobacteria. Trends Microbiol. 23, 642–652 (2015). (PMID: 2643369610.1016/j.tim.2015.07.008)
Cragg, G. M., Kingston, D. G. & Newman, D. J. Anticancer Agents from Natural Products. (CRC press, 2011).
Cragg, G. M. & Newman, D. J. Natural products: a continuing source of novel drug leads. Biochimica et. Biophysica Acta 1830, 3670–3695 (2013). (PMID: 23428572367286210.1016/j.bbagen.2013.02.008)
Singh, R., Kumar, M., Mittal, A. & Mehta, P. K. Microbial metabolites in nutrition, healthcare and agriculture. 3 Biotech 7, 15 (2017). (PMID: 28391479538517410.1007/s13205-016-0586-4)
Bohlmann, J. & Keeling, C. I. Terpenoid biomaterials. Plant J. 54, 656–669 (2008). (PMID: 1847687010.1111/j.1365-313X.2008.03449.x)
Kang, A. & Lee, T. S. Biotechnology for Biofuel Production and Optimization 35–71 (Elsevier, 2016).
Nowruzi, B., Sarvari, G. & Blanco, S. The cosmetic application of cyanobacterial secondary metabolites. Algal Res. 49, 101959 (2020). (PMID: 10.1016/j.algal.2020.101959)
Crits-Christoph, A., Diamond, S., Butterfield, C. N., Thomas, B. C. & Banfield, J. F. Novel soil bacteria possess diverse genes for secondary metabolite biosynthesis. Nature 558, 440–444 (2018). (PMID: 2989944410.1038/s41586-018-0207-y)
Sharrar, A. M. et al. Bacterial secondary metabolite biosynthetic potential in soil varies with phylum, depth, and vegetation type. Mbio. 11, 1–17 (2020). (PMID: 10.1128/mBio.00416-20)
Libis, V. et al. Uncovering the biosynthetic potential of rare metagenomic DNA using co-occurrence network analysis of targeted sequences. Nat. Commun. 10, 1–9 (2019). (PMID: 10.1038/s41467-019-11658-z)
Haro-Moreno, J. M., López-Pérez, M. & Rodriguez-Valera, F. Enhanced recovery of microbial genes and genomes from a marine water column using long-read metagenomics. Front Microbiol. 2410, 1–15 (2021).
Navarro-Muñoz, J. C. et al. A computational framework to explore large-scale biosynthetic diversity. Nat Chem Biol. 16, 60–68 (2019). (PMID: 31768033691786510.1038/s41589-019-0400-9)
Sugimoto, Y. et al. A metagenomic strategy for harnessing the chemical repertoire of the human microbiome. Science 366, 1–11 (2019). (PMID: 10.1126/science.aax9176)
Katz, M., Hover, B. M. & Brady, S. F. Culture-independent discovery of natural products from soil metagenomes. J. Ind. Microbiol. Biotechnol. 43, 129–141 (2016). (PMID: 2658640410.1007/s10295-015-1706-6)
Lynch, M. D. & Neufeld, J. D. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 13, 217–229 (2015). (PMID: 2573070110.1038/nrmicro3400)
Amos, G. C. et al. Comparative transcriptomics as a guide to natural product discovery and biosynthetic gene cluster functionality. Proc. Natl Acad. Sci. USA 114, E11121–E11130 (2017). (PMID: 29229817574820210.1073/pnas.1714381115)
Rodriguez-Caballero, E. et al. Dryland photoautotrophic soil surface communities endangered by global change. Nat. Geosci. 11, 185–189 (2018). (PMID: 10.1038/s41561-018-0072-1)
Reddy, B. V. B. et al. Natural product biosynthetic gene diversity in geographically distinct soil microbiomes. Appl. Environ. Microbiol. 78, 3744–3752 (2012). (PMID: 22427492334634710.1128/AEM.00102-12)
Starkenburg, S. R. et al. Genome of the cyanobacterium Microcoleus vaginatus FGP-2, a photosynthetic ecosystem engineer of arid land soil biocrusts worldwide. J. Bacteriol. 193, 4569–4570 (2011). (PMID: 21705610316553010.1128/JB.05138-11)
Belnap, J., Weber, B. & Büdel, B. Biological Soil Crusts: an Organizing Principle in Drylands 3–13 (Springer, 2016).
Swenson, T. L., Karaoz, U., Swenson, J. M., Bowen, B. P. & Northen, T. R. Linking soil biology and chemistry in biological soil crust using isolate exometabolomics. Nat. Commun. 9, 1–10 (2018). (PMID: 10.1038/s41467-017-02356-9)
Adamek, M., Spohn, M., Stegmann, E. & Ziemert, N. Antibiotics 23–47 (Springer, 2017).
Couradeau, E. et al. Bacteria increase arid-land soil surface temperature through the production of sunscreens. Nat. Commun. 7, 1–7 (2016). (PMID: 10.1038/ncomms10373)
Martins, T. P. et al. Chemistry, bioactivity and biosynthesis of cyanobacterial alkylresorcinols. Nat. Prod. Rep. 36, 1437–1461 (2019). (PMID: 30702733683662610.1039/C8NP00080H)
Luesch, H., Moore, R. E., Paul, V. J., Mooberry, S. L. & Corbett, T. H. Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J. Nat. Products 64, 907–910 (2001). (PMID: 10.1021/np010049y)
Chrapusta, E. et al. Microcystins and anatoxin-a in Arctic biocrust cyanobacterial communities. Toxicon 101, 35–40 (2015). (PMID: 2593733810.1016/j.toxicon.2015.04.016)
Van Goethem, M. W., Swenson, T. L., Trubl, G., Roux, S. & Northen, T. R. Characteristics of wetting-induced bacteriophage blooms in biological soil crust. Mbio. 10, 1–15 (2019). (PMID: 10.1128/mBio.02287-19)
Makhalanyane, T. P. et al. Microbial ecology of hot desert edaphic systems. FEMS Microbiol. Rev. 39, 203–221 (2015). (PMID: 2572501310.1093/femsre/fuu011)
Bowker, M. A., Reed, S. C., Maestre, F. T. & Eldridge, D. J. Biocrusts: the living skin of the earth. (Springer, 2018).
Büdel, B., Dulić, T., Darienko, T., Rybalka, N. & Friedl, T. Biological Soil Crusts: an Organizing Principle in Drylands 55–80 (Springer, 2016).
Giraldo‐Silva, A., Nelson, C., Barger, N. N. & Garcia‐Pichel, F. Nursing biocrusts: isolation, cultivation, and fitness test of indigenous cyanobacteria. Restor. Ecol. 27, 793–803 (2019). (PMID: 10.1111/rec.12920)
Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017). (PMID: 28298431541176710.1101/gr.215087.116)
Kolmogorov, M. et al. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat. Methods 17, 1103–1110 (2020). (PMID: 3302065610.1038/s41592-020-00971-x)
Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017). (PMID: 28298430541177710.1101/gr.213959.116)
Mikheenko, A., Saveliev, V. & Gurevich, A. MetaQUAST: evaluation of metagenome assemblies. Bioinformatics 32, 1088–1090 (2016). (PMID: 2661412710.1093/bioinformatics/btv697)
Howe, A. C. et al. Tackling soil diversity with the assembly of large, complex metagenomes. Proc. Natl Acad. Sci. USA 111, 4904–4909 (2014). (PMID: 24632729397725110.1073/pnas.1402564111)
Frank, J. A. et al. Improved metagenome assemblies and taxonomic binning using long-read circular consensus sequence data. Sci. Rep. 6, 1–10 (2016). (PMID: 10.1038/srep25373)
Hiraoka, S. et al. Metaepigenomic analysis reveals the unexplored diversity of DNA methylation in an environmental prokaryotic community. Nat. Commun. 10, 1–10 (2019). (PMID: 10.1038/s41467-018-08103-y)
Blin, K. et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47, W81–W87 (2019). (PMID: 31032519660243410.1093/nar/gkz310)
Garcia-Pichel, F., Loza, V., Marusenko, Y., Mateo, P. & Potrafka, R. M. Temperature drives the continental-scale distribution of key microbes in topsoil communities. Science 340, 1574–1577 (2013). (PMID: 2381271410.1126/science.1236404)
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990). (PMID: 223171210.1016/S0022-2836(05)80360-2)
Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 499–509 (2020).
Fuqua, C. & Greenberg, E. P. Listening in on bacteria: acyl-homoserine lactone signalling. Nat. Rev. Mol. Cell Biol. 3, 685–695 (2002). (PMID: 1220912810.1038/nrm907)
Ciemniecki, J. A. & Newman, D. K. The potential for redox-active metabolites to enhance or unlock anaerobic survival metabolisms in aerobes. J. Bacteriol. 202, 1–14 (2020). (PMID: 10.1128/JB.00797-19)
Rajeev, L. et al. Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. ISME J. 7, 2178–2191 (2013). (PMID: 23739051380626510.1038/ismej.2013.83)
Nunes da Rocha, U. et al. Isolation of a significant fraction of non-phototroph diversity from a desert biological soil crust. Front. Microbiol. 6, 277 (2015). (PMID: 25926821439641310.3389/fmicb.2015.00277)
Felde, V. J. M. N. L., Peth, S., Uteau-Puschmann, D., Drahorad, S. & Felix-Henningsen, P. Soil microstructure as an under-explored feature of biological soil crust hydrological properties: case study from the NW Negev Desert. Biodivers. Conserv. 23, 1687–1708 (2014). (PMID: 10.1007/s10531-014-0693-7)
Bushnell, B. BBMap: a fast, accurate, splice-aware aligner. No. LBNL-7065E. (Lawrence Berkeley National Lab (LBNL), Berkeley, CA (United States), 2014).
Donia, M. S., Ruffner, D. E., Cao, S. & Schmidt, E. W. Accessing the hidden majority of marine natural products through metagenomics. ChemBioChem. 12, 1230–1236 (2011). (PMID: 21542088339715410.1002/cbic.201000780)
Van Der Maaten, L. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 15, 3221–3245 (2014).
Couradeau, E., Giraldo-Silva, A., De Martini, F. & Garcia-Pichel, F. Spatial segregation of the biological soil crust microbiome around its foundational cyanobacterium, Microcoleus vaginatus, and the formation of a nitrogen-fixing cyanosphere. Microbiome 7, 1–12 (2019). (PMID: 10.1186/s40168-019-0661-2)
Magne, F. et al. The firmicutes/bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients? Nutrients 12, 1474 (2020). (PMID: 728521810.3390/nu12051474)
Baran, R. et al. Exometabolite niche partitioning among sympatric soil bacteria. Nat. Commun. 6, 8289 (2015). (PMID: 2639210710.1038/ncomms9289)
Kupriyanova, E. V. et al. Extracellular β-class carbonic anhydrase of the alkaliphilic cyanobacterium Microcoleus chthonoplastes. J. Photochem. Photobiol. B: Biol. 103, 78–86 (2011). (PMID: 10.1016/j.jphotobiol.2011.01.021)
Hernandez, M. & Newman, D. Extracellular electron transfer. Cell. Mol. Life Sci. 58, 1562–1571 (2001). (PMID: 1170698410.1007/PL00000796)
Karaoz, U. et al. Large blooms of Bacillales (Firmicutes) underlie the response to wetting of cyanobacterial biocrusts at various stages of maturity. MBio. 9, e01366–01316 (2018). (PMID: 29511079584499510.1128/mBio.01366-16)
Rodriguez-R, L. M., Gunturu, S., Tiedje, J. M., Cole, J. R. & Konstantinidis, K. T. Nonpareil 3: fast estimation of metagenomic coverage and sequence diversity. MSystems. 3, 1–9 (2018). (PMID: 10.1128/mSystems.00039-18)
Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012). (PMID: 2307127010.1093/bioinformatics/bts611)
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016). (PMID: 27214047492737710.1038/nmeth.3869)
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012). (PMID: 23193283353111210.1093/nar/gks1219)
Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864 (2011). (PMID: 21278185305132710.1093/bioinformatics/btr026)
Van der Walt, A. J. et al. Assembling metagenomes, one community at a time. BMC Genom. 18, 1–13 (2017).
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 11, 119 (2010). (PMID: 10.1186/1471-2105-11-119)
Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014). (PMID: 2464206310.1093/bioinformatics/btu153)
Arkin, A. P. et al. KBase: the United States department of energy systems biology knowledgebase. Nat. Biotechnol. 36, 566 (2018). (PMID: 29979655687099110.1038/nbt.4163)
Kautsar, S. A. et al. MIBiG 2.0: a repository for biosynthetic gene clusters of known function. Nucleic Acids Res. 48, D454–D458 (2020). (PMID: 31612915)
von Meijenfeldt, F. B., Arkhipova, K., Cambuy, D. D., Coutinho, F. H. & Dutilh, B. E. Robust taxonomic classification of uncharted microbial sequences and bins with CAT and BAT. Genome Biol. 20, 217 (2019). (PMID: 10.1186/s13059-019-1817-x)
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009). (PMID: 19505943272300210.1093/bioinformatics/btp352)
Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012). (PMID: 22543367337183210.1093/bioinformatics/bts199)
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). (PMID: 25516281430204910.1186/s13059-014-0550-8)
معلومات مُعتمدة: DE-AC02-05CH11231 DOE | Office of Science (SC)
تواريخ الأحداث: Date Created: 20211119 Date Completed: 20211224 Latest Revision: 20230209
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC8602731
DOI: 10.1038/s42003-021-02809-4
PMID: 34795375
قاعدة البيانات: MEDLINE
الوصف
تدمد:2399-3642
DOI:10.1038/s42003-021-02809-4