دورية أكاديمية

Light-activated interlayer contraction in two-dimensional perovskites for high-efficiency solar cells.

التفاصيل البيبلوغرافية
العنوان: Light-activated interlayer contraction in two-dimensional perovskites for high-efficiency solar cells.
المؤلفون: Li W; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.; Applied Physics Program, Smalley-Curl Institute, Rice University, Houston, TX, USA., Sidhik S; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.; Institut FOTON, University Rennes, INSA Rennes, CNRS, Rennes, France., Traore B; Institut FOTON, University Rennes, INSA Rennes, CNRS, Rennes, France.; Univ Rennes, ENSCR, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) -UMR 6226, Rennes, France., Asadpour R; School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA., Hou J; Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA., Zhang H; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.; Applied Physics Program, Smalley-Curl Institute, Rice University, Houston, TX, USA., Fehr A; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA., Essman J; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA., Wang Y; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA., Hoffman JM; Department of Chemistry, Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA., Spanopoulos I; Department of Chemistry, Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA., Crochet JJ; Los Alamos National Laboratory, Los Alamos, NM, USA., Tsai E; Center for Functional Nanomaterials, Brookhaven National Laboratory, Brookhaven, NY, USA., Strzalka J; X-Ray Science Division, Argonne National Laboratory, Argonne, IL, USA., Katan C; Univ Rennes, ENSCR, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) -UMR 6226, Rennes, France., Alam MA; School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA., Kanatzidis MG; Department of Chemistry, Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA., Even J; School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA., Blancon JC; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA. blanconjc@gmail.com., Mohite AD; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA. adm4@rice.edu.; Applied Physics Program, Smalley-Curl Institute, Rice University, Houston, TX, USA. adm4@rice.edu.
المصدر: Nature nanotechnology [Nat Nanotechnol] 2022 Jan; Vol. 17 (1), pp. 45-52. Date of Electronic Publication: 2021 Nov 22.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101283273 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1748-3395 (Electronic) Linking ISSN: 17483387 NLM ISO Abbreviation: Nat Nanotechnol Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Pub. Group, 2006-
مستخلص: Understanding and tailoring the physical behaviour of halide perovskites under practical environments is critical for designing efficient and durable optoelectronic devices. Here, we report that continuous light illumination leads to >1% contraction in the out-of-plane direction in two-dimensional hybrid perovskites, which is reversible and strongly dependent on the specific superlattice packing. X-ray photoelectron spectroscopy measurements show that constant light illumination results in the accumulation of positive charges in the terminal iodine atoms, thereby enhancing the bonding character of inter-slab I-I interactions across the organic barrier and activating out-of-plane contraction. Correlated charge transport, structural and photovoltaic measurements confirm that the onset of the light-induced contraction is synchronized to a threefold increase in carrier mobility and conductivity, which is consistent with an increase in the electronic band dispersion predicted by first-principles calculations. Flux-dependent space-charge-limited current measurement reveals that light-induced interlayer contraction activates interlayer charge transport. The enhanced charge transport boosts the photovoltaic efficiency of two-dimensional perovskite solar cells up to 18.3% by increasing the device's fill factor and open-circuit voltage.
(© 2021. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Mitzi, D. B., Chondroudis, K. & Kagan, C. R. Organic-inorganic electronics. IBM J. Res. Dev. 45, 29–45 (2001). (PMID: 10.1147/rd.451.0029)
Tsai, H. et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016). (PMID: 10.1038/nature18306)
Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016). (PMID: 10.1038/nnano.2016.110)
Long, G. et al. Spin control in reduced-dimensional chiral perovskites. Nat. Photon. 12, 528–533 (2018). (PMID: 10.1038/s41566-018-0220-6)
Lu, H. et al. Spin-dependent charge transport through 2D chiral hybrid lead-iodide perovskites. Sci. Adv. 5, eaay0571 (2019). (PMID: 10.1126/sciadv.aay0571)
Chen, Y. et al. 2D Ruddlesden–Popper perovskites for optoelectronics. Adv. Mater. 30, 1703487 (2018). (PMID: 10.1002/adma.201703487)
Cao, D. H., Stoumpos, C. C., Farha, O. K., Hupp, J. T. & Kanatzidis, M. G. 2D homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc. 137, 7843–7850 (2015). (PMID: 10.1021/jacs.5b03796)
Mao, L., Stoumpos, C. C. & Kanatzidis, M. G. Two-dimensional hybrid halide perovskites: principles and promises. J. Am. Chem. Soc. 141, 1171–1190 (2019). (PMID: 10.1021/jacs.8b10851)
Billing, D. G. & Lemmerer, A. Synthesis, characterization and phase transitions of the inorganic–organic layered perovskite-type hybrids [(C n H 2n +1 NH 3 ) 2 PbI 4 ] (n = 12, 14, 16 and 18). New J. Chem. 32, 1736–1746 (2008). (PMID: 10.1039/b805417g)
Billing, D. G. & Lemmerer, A. Synthesis and crystal structures of inorganic–organic hybrids incorporating an aromatic amine with a chiral functional group. CrystEngComm 8, 686–695 (2006). (PMID: 10.1039/B606987H)
Mitzi, D. B. in Progress in Inorganic Chemistry Vol. 48 (ed. Karlin, K. D.) 1–121 (John Wiley & Sons, 1999). https://doi.org/10.1002/9780470166499.ch1.
Tu, Q. et al. Out-of-plane mechanical properties of 2D hybrid organic–inorganic perovskites by nanoindentation. ACS Appl. Mater. Interfaces 10, 22167–22173 (2018). (PMID: 10.1021/acsami.8b05138)
Reyes-Martinez, M. A. et al. Unraveling the elastic properties of (quasi) two-dimensional hybrid perovskites: a joint experimental and theoretical study. ACS Appl. Mater. Interfaces 12, 17881–17892 (2020). (PMID: 10.1021/acsami.0c02327)
Katan, C., Mercier, N. & Even, J. Quantum and dielectric confinement effects in lower-dimensional hybrid perovskite semiconductors. Chem. Rev. 119, 3140–3192 (2019). (PMID: 10.1021/acs.chemrev.8b00417)
Spanopoulos, I. et al. Uniaxial expansion of the 2D Ruddlesden–Popper perovskite family for improved environmental stability. J. Am. Chem. Soc. 141, 5518–5534 (2019). (PMID: 10.1021/jacs.9b01327)
Gompel, W. T. M. V. et al. Towards 2D layered hybrid perovskites with enhanced functionality: introducing charge-transfer complexes via self-assembly. Chem. Commun. 55, 2481–2484 (2019). (PMID: 10.1039/C8CC09955C)
Ahn, J. et al. A new class of chiral semiconductors: chiral-organic-molecule-incorporating organic–inorganic hybrid perovskites. Mater. Horiz. 4, 851–856 (2017). (PMID: 10.1039/C7MH00197E)
Mao, L. et al. Hybrid Dion–Jacobson 2D lead iodide perovskites. J. Am. Chem. Soc. 140, 3775–3783 (2018). (PMID: 10.1021/jacs.8b00542)
Soe, C. M. M. et al. New type of 2D perovskites with alternating cations in the interlayer space, (C(NH 2 ) 3 )(CH 3 NH 3 ) n Pb n I 3n+1 : structure, properties, and photovoltaic performance. J. Am. Chem. Soc. 139, 16297–16309 (2017). (PMID: 10.1021/jacs.7b09096)
Tsai, H. et al. Design principles for electronic charge transport in solution-processed vertically stacked 2D perovskite quantum wells. Nat. Commun. 9, 2130 (2018). (PMID: 10.1038/s41467-018-04430-2)
Zhang, Y., Sun, M., Zhou, N., Huang, B. & Zhou, H. Electronic tunability and mobility anisotropy of quasi-2D perovskite single crystals with varied spacer cations. J. Phys. Chem. Lett. 11, 7610–7616 (2020). (PMID: 10.1021/acs.jpclett.0c02274)
Soe, C. M. M. et al. Structural and thermodynamic limits of layer thickness in 2D halide perovskites. Proc. Natl Acad. Sci. USA 116, 58–66 (2019). (PMID: 10.1073/pnas.1811006115)
Leng, K. et al. Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation. Nat. Mater. 17, 908–914 (2018). (PMID: 10.1038/s41563-018-0164-8)
Liu, G. et al. Isothermal pressure-derived metastable states in 2D hybrid perovskites showing enduring bandgap narrowing. Proc. Natl Acad. Sci. USA 115, 8076–8081 (2018). (PMID: 10.1073/pnas.1809167115)
Liu, S. et al. Manipulating efficient light emission in two-dimensional perovskite crystals by pressure-induced anisotropic deformation. Sci. Adv. 5, eaav9445 (2019). (PMID: 10.1126/sciadv.aav9445)
Yu, S. et al. Nonconfinement structure revealed in Dion–Jacobson type quasi-2D perovskite expedites interlayer charge transport. Small 15, 1905081 (2019). (PMID: 10.1002/smll.201905081)
Blancon, J.-C., Even, J., Stoumpos, C. C., Kanatzidis, M. G. & Mohite, A. D. Semiconductor physics of organic–inorganic 2D halide perovskites. Nat. Nanotechnol. 15, 969–985 (2020). (PMID: 10.1038/s41565-020-00811-1)
Svensson, P. H. & Kloo, L. Synthesis, structure, and bonding in polyiodide and metal iodide-iodide systems. Chem. Rev. 103, 1649–1684 (2003). (PMID: 10.1021/cr0204101)
Giovanni, D. et al. The physics of interlayer exciton delocalization in Ruddlesden–Popper lead halide perovskites. Nano Lett. 21, 405–413 (2021). (PMID: 10.1021/acs.nanolett.0c03800)
Santomauro, F. G. et al. Localized holes and delocalized electrons in photoexcited inorganic perovskites: watching each atomic actor by picosecond X-ray absorption spectroscopy. Struct. Dyn. 4, 044002 (2016). (PMID: 10.1063/1.4971999)
Zu, F.-S. et al. Impact of white light illumination on the electronic and chemical structures of mixed halide and single crystal perovskites. Adv. Opt. Mater. 5, 1700139 (2017). (PMID: 10.1002/adom.201700139)
Blancon, J.-C. et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 355, 1288–1292 (2017). (PMID: 10.1126/science.aal4211)
Zhang, Z., Fang, W.-H., Tokina, M. V., Long, R. & Prezhdo, O. V. Rapid decoherence suppresses charge recombination in multi-layer 2D halide perovskites: time-domain ab initio analysis. Nano Lett. 18, 2459–2466 (2018). (PMID: 10.1021/acs.nanolett.8b00035)
Neutzner, S. et al. Exciton-polaron spectral structures in two-dimensional hybrid lead-halide perovskites. Phys. Rev. Mater. 2, 064605 (2018). (PMID: 10.1103/PhysRevMaterials.2.064605)
Ren, H. et al. Efficient and stable Ruddlesden–Popper perovskite solar cell with tailored interlayer molecular interaction. Nat. Photon. 14, 154–163 (2020). (PMID: 10.1038/s41566-019-0572-6)
Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015). (PMID: 10.1126/science.aaa2725)
Goodman, A. M. & Rose, A. Double extraction of uniformly generated electron−hole pairs from insulators with noninjecting contacts. J. Appl. Phys. 42, 2823–2830 (1971). (PMID: 10.1063/1.1660633)
Mihailetchi, V. D., Wildeman, J. & Blom, P. W. M. Space-charge limited photocurrent. Phys. Rev. Lett. 94, 126602 (2005). (PMID: 10.1103/PhysRevLett.94.126602)
Ma, C., Shen, D., Ng, T.-W., Lo, M.-F. & Lee, C.-S. 2D perovskites with short interlayer distance for high-performance solar cell application. Adv. Mater. 30, 1800710 (2018). (PMID: 10.1002/adma.201800710)
Kirkpatrick, S. Percolation and conduction. Rev. Mod. Phys. 45, 574–588 (1973). (PMID: 10.1103/RevModPhys.45.574)
Seager, C. H. & Pike, G. E. Percolation and conductivity: a computer study. II. Phys. Rev. B 10, 1435–1446 (1974). (PMID: 10.1103/PhysRevB.10.1435)
Britnell, L. et al. Strong light-matter Interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013). (PMID: 10.1126/science.1235547)
Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 8, 899–907 (2014). (PMID: 10.1038/nphoton.2014.271)
Stoumpos, C. et al. Ruddlesden−Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28, 2852–2867 (2016). (PMID: 10.1021/acs.chemmater.6b00847)
He, X. Oriented growth of ultrathin single crystals of 2D Ruddlesden–Popper hybrid lead iodide perovskite for high-performance photodetector. ACS Appl. Mater. Interfaces 11, 15905–15912 (2019). (PMID: 10.1021/acsami.9b01825)
Jiang, Z. et al. The dedicated high-resolution grazing-incidence X-ray scattering beamline 8-ID-E at the Advanced Photon Source. J. Synchrotron Radiat. 19, 627–636 (2012). (PMID: 10.1107/S0909049512022017)
Yager, K. G. et al. SciAnalysis. GitHub https://github.com/CFN-softbio/SciAnalysis (2021).
Sanchez-Bajo, R. & Cumbrera, F. L. The use of the Pseudo-Voigt function in variance method of X-ray line-broadening analysis. J. Appl. Crystallogr. 30, 427–430 (1997). (PMID: 10.1107/S0021889896015464)
Patterson, A. L. The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (2019). (PMID: 10.1103/PhysRev.56.978)
Smiligies, D.-M. Scherrer grain-size analysis adapted to grazing incidence scattering with area detectors. J. Appl. Crystallogr. 42, 1030–1034 (2009). (PMID: 10.1107/S0021889809040126)
Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964). (PMID: 10.1103/PhysRev.136.B864)
Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965). (PMID: 10.1103/PhysRev.140.A1133)
Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter. 14, 2745–2779 (2002). (PMID: 10.1088/0953-8984/14/11/302)
Cooper, V. W. Van der Waals density functional: an appropriate exchange functional. Phys. Rev. B 81, 161104 (2010). (PMID: 10.1103/PhysRevB.81.161104)
Hamada, I. & Otani, M. Comparative van der Waals density functional study of graphene on metal surfaces. Phys. Rev. B 82, 153412 (2010). (PMID: 10.1103/PhysRevB.82.153412)
Yuk, S. F. et al. Towards an accurate description of perovskite ferroelectrics: exchange and correlations effects. Sci. Rep. 7, 1738 (2017).
Traore, B. et al. Importance of vacancies and doping in hole-transporting nickel oxide interface with halide perovskites. ACS Appl. Mater. Interface 12, 6633–6640 (2020). (PMID: 10.1021/acsami.9b19457)
Troullier, N. & Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991). (PMID: 10.1103/PhysRevB.43.1993)
Bitzek, E. et al. Structural relaxation made simple. Phys. Rev. Lett. 97, 170201 (2006). (PMID: 10.1103/PhysRevLett.97.170201)
معلومات مُعتمدة: NSF 20-587 National Science Foundation (NSF); #1724728 National Science Foundation (NSF); 1724728 National Science Foundation (NSF); N00014-20-1-2725 United States Department of Defense | United States Navy | ONR | Office of Naval Research Global (ONR Global); DE-SC0012704 U.S. Department of Energy (DOE); DE-AC02-06CH11357 U.S. Department of Energy (DOE); N00014-20-1-2725 United States Department of Defense | United States Navy | Office of Naval Research (ONR)
تواريخ الأحداث: Date Created: 20211123 Latest Revision: 20230208
رمز التحديث: 20231215
DOI: 10.1038/s41565-021-01010-2
PMID: 34811551
قاعدة البيانات: MEDLINE
الوصف
تدمد:1748-3395
DOI:10.1038/s41565-021-01010-2