دورية أكاديمية

FAIRification of nanosafety data to improve applicability of (Q)SAR approaches: A case study on in vitro Comet assay genotoxicity data.

التفاصيل البيبلوغرافية
العنوان: FAIRification of nanosafety data to improve applicability of (Q)SAR approaches: A case study on in vitro Comet assay genotoxicity data.
المؤلفون: Bossa C; Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy., Andreoli C; Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy., Bakker M; Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands., Barone F; Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy., De Angelis I; Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy., Jeliazkova N; Ideaconsult Ltd., Sofia, Bulgaria., Nymark P; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden., Battistelli CL; Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy.
المصدر: Computational toxicology (Amsterdam, Netherlands) [Comput Toxicol] 2021 Nov; Vol. 20, pp. 100190.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Elsevier B.V Country of Publication: Netherlands NLM ID: 101708081 Publication Model: Print Cited Medium: Print ISSN: 2468-1113 (Print) Linking ISSN: 24681113 NLM ISO Abbreviation: Comput Toxicol Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: [Amsterdam] : Elsevier B.V., [2017]
مستخلص: (Quantitative) structure-activity relationship ([Q]SAR) methodologies are widely applied to predict the (eco)toxicological effects of chemicals, and their use is envisaged in different regulatory frameworks for filling data gaps of untested substances. However, their application to the risk assessment of nanomaterials is still limited, also due to the scarcity of large and curated experimental datasets. Despite a great amount of nanosafety data having been produced over the last decade in international collaborative initiatives, their interpretation, integration and reuse has been hampered by several obstacles, such as poorly described (meta)data, non-standard terminology, lack of harmonized reporting formats and criteria. Recently, the FAIR (Findable, Accessible, Interoperable, and Reusable) principles have been established to guide the scientific community in good data management and stewardship. The EU H2020 Gov4Nano project, together with other international projects and initiatives, is addressing the challenge of improving nanosafety data FAIRness, for maximizing their availability, understanding, exchange and ultimately their reuse. These efforts are largely supported by the creation of a common Nanosafety Data Interface, which connects a row of project-specific databases applying the eNanoMapper data model. A wide variety of experimental data relating to characterization and effects of nanomaterials are stored in the database; however, the methods, protocols and parameters driving their generation are not fully mature. This article reports the progress of an ongoing case study in the Gov4nano project on the reuse of in vitro Comet genotoxicity data, focusing on the issues and challenges encountered in their FAIRification through the eNanoMapper data model. The case study is part of an iterative process in which the FAIRification of data supports the understanding of the phenomena underlying their generation and, ultimately, improves their reusability.
Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(© 2021 The Authors.)
References: BMC Biotechnol. 2013 Jan 14;13:2. (PMID: 23311978)
Beilstein J Nanotechnol. 2015 Jul 27;6:1609-34. (PMID: 26425413)
Nanotoxicology. 2017 Oct;11(8):964-977. (PMID: 29046118)
Nanoscale. 2020 Feb 21;12(7):4695-4708. (PMID: 32049073)
J Biomed Semantics. 2015 Mar 21;6:10. (PMID: 25815161)
Front Toxicol. 2021 Apr 29;3:653386. (PMID: 35295099)
Food Chem Toxicol. 2018 Feb;112:478-494. (PMID: 28943385)
Methods Mol Biol. 2002;186:147-59. (PMID: 12013763)
Mutagenesis. 2018 Feb 24;33(1):1-7. (PMID: 29325088)
Int J Mol Sci. 2017 Jul 12;18(7):. (PMID: 28704975)
Nat Protoc. 2020 Dec;15(12):3817-3826. (PMID: 33106678)
Methods Mol Biol. 2019;1894:83-122. (PMID: 30547457)
NanoImpact. 2018 Jan;9:85-101. (PMID: 30246165)
Food Chem Toxicol. 2017 Nov;109(Pt 1):797-811. (PMID: 28847762)
Beilstein J Nanotechnol. 2015 Oct 05;6:1978-99. (PMID: 26665069)
Part Fibre Toxicol. 2018 Sep 24;15(1):37. (PMID: 30249272)
Comput Struct Biotechnol J. 2020 Mar 07;18:583-602. (PMID: 32226594)
Front Genet. 2014 Jul 17;5:217. (PMID: 25101109)
Methods Mol Biol. 2018;1800:447-473. (PMID: 29934905)
Nanomaterials (Basel). 2020 Sep 24;10(10):. (PMID: 32987901)
J Appl Toxicol. 2020 Nov;40(11):1511-1525. (PMID: 32608137)
Nat Nanotechnol. 2021 Jun;16(6):612-614. (PMID: 33986513)
Nanomaterials (Basel). 2020 Oct 15;10(10):. (PMID: 33076428)
Electrophoresis. 2008 Jul;29(14):3005-12. (PMID: 18576363)
Sci Data. 2016 Mar 15;3:160018. (PMID: 26978244)
Nanoscale. 2016 May 21;8(19):9919-43. (PMID: 27143028)
Nanomaterials (Basel). 2020 Oct 20;10(10):. (PMID: 33092028)
Adv Exp Med Biol. 2017;947:303-324. (PMID: 28168672)
Nat Nanotechnol. 2021 Jun;16(6):608-611. (PMID: 34017101)
NanoImpact. 2021 Apr;22:100314. (PMID: 35559971)
Mutagenesis. 2015 Jan;30(1):1-4. (PMID: 25527721)
Chem Soc Rev. 2015 Oct 7;44(17):6287-305. (PMID: 26056687)
Regul Toxicol Pharmacol. 2016 Nov;81:334-340. (PMID: 27670079)
J Cell Sci. 1976 Nov;22(2):303-24. (PMID: 1002771)
Exp Cell Res. 1988 Mar;175(1):184-91. (PMID: 3345800)
Part Fibre Toxicol. 2014 Dec 03;11:65. (PMID: 25466209)
Carcinogenesis. 1993 Sep;14(9):1733-5. (PMID: 8403192)
Toxicol Sci. 2018 Aug 1;164(2):391-416. (PMID: 29701824)
Nat Nanotechnol. 2021 Jun;16(6):644-654. (PMID: 34017099)
Toxicol Appl Pharmacol. 2016 May 15;299:96-100. (PMID: 26723909)
Environ Mol Mutagen. 2000;35(3):206-21. (PMID: 10737956)
Toxicology. 2013 Nov 8;313(1):15-23. (PMID: 23165187)
Small. 2020 Feb;16(6):e1904749. (PMID: 31913582)
فهرسة مساهمة: Keywords: (Q)SAR approaches; (Q)SAR, (Quantitative) structure-activity relationship; AOP, Adverse Outcome Pathway; ECHA, European Chemicals Agency; FAIR principles; FAIR, Findable, Accessible, Interoperable, and Reusable; Fpg, Formamido pyrimidine glycosilase; Genotoxicity; IATA, Integrated Approaches to Testing and Assessment; ISA–Tab, Investigation/Study/Assay Tab-delimited; JRC, Joint Research Centre; MIRCA, Minimum Information for Reporting Comet Assay; NMBP, Horizon 2020 Advisory Group for Nanotechnologies, Advanced Materials, Biotechnology and Advanced Manufacturing and Processing; NMBP-13-2018 projects, Gov4Nano, NANORIGO and RiskGONE; NMs, nanomaterials; Nano-EHS, Nano Environment, Health and Safety; Nanomaterials; Nanosafety data; OECD, Organisation for Economic Co-operation and Development; OTM, Olive tail moment; REACH, Registration, Evaluation Authorisation and Restriction of Chemicals; SCGE, Single Cell Gel Electrophoresis; SOPs, Standard Operating Procedures; in vitro Comet assay
تواريخ الأحداث: Date Created: 20211125 Latest Revision: 20240404
رمز التحديث: 20240404
مُعرف محوري في PubMed: PMC8591730
DOI: 10.1016/j.comtox.2021.100190
PMID: 34820591
قاعدة البيانات: MEDLINE
الوصف
تدمد:2468-1113
DOI:10.1016/j.comtox.2021.100190