دورية أكاديمية

AGPAT2 interaction with CDP-diacylglycerol synthases promotes the flux of fatty acids through the CDP-diacylglycerol pathway.

التفاصيل البيبلوغرافية
العنوان: AGPAT2 interaction with CDP-diacylglycerol synthases promotes the flux of fatty acids through the CDP-diacylglycerol pathway.
المؤلفون: Mak HY; School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW, 2052, Australia., Ouyang Q; MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, 210061, Nanjing, China., Tumanov S; Heart Research Institute, The University of Sydney, Newtown, NSW, 2042, Australia.; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.; Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia., Xu J; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China., Rong P; MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, 210061, Nanjing, China., Dong F; Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China., Lam SM; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.; Lipidall Technologies Company Limited, 213022, Changzhou, Jiangsu Province, China., Wang X; Laboratory of Lipid Metabolism, Hebei Medical University, 050017, Shijiazhuang, Hebei, China., Lukmantara I; School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW, 2052, Australia., Du X; School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW, 2052, Australia., Gao M; Laboratory of Lipid Metabolism, Hebei Medical University, 050017, Shijiazhuang, Hebei, China., Brown AJ; School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW, 2052, Australia., Gong X; Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China., Shui G; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China., Stocker R; Heart Research Institute, The University of Sydney, Newtown, NSW, 2042, Australia.; Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia.; School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia., Huang X; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China., Chen S; MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, 210061, Nanjing, China., Yang H; School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW, 2052, Australia. h.rob.yang@unsw.edu.au.
المصدر: Nature communications [Nat Commun] 2021 Nov 25; Vol. 12 (1), pp. 6877. Date of Electronic Publication: 2021 Nov 25.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: Acyltransferases/*metabolism , Cytidine Diphosphate Diglycerides/*metabolism , Diacylglycerol Cholinephosphotransferase/*metabolism , Fatty Acids/*metabolism, Acyltransferases/deficiency ; Animals ; Biosynthetic Pathways ; Cell Line ; Diacylglycerol Cholinephosphotransferase/deficiency ; Humans ; Lipid Droplets/metabolism ; Lipogenesis ; Liver/metabolism ; Mice ; Multienzyme Complexes ; Oleic Acid/metabolism ; Phosphatidic Acids/metabolism
مستخلص: AGPATs (1-acylglycerol-3-phosphate O-acyltransferases) catalyze the acylation of lysophosphatidic acid to form phosphatidic acid (PA), a key step in the glycerol-3-phosphate pathway for the synthesis of phospholipids and triacylglycerols. AGPAT2 is the only AGPAT isoform whose loss-of-function mutations cause a severe form of human congenital generalized lipodystrophy. Paradoxically, AGPAT2 deficiency is known to dramatically increase the level of its product, PA. Here, we find that AGPAT2 deficiency impairs the biogenesis and growth of lipid droplets. We show that AGPAT2 deficiency compromises the stability of CDP-diacylglycerol (DAG) synthases (CDSs) and decreases CDS activity in both cell lines and mouse liver. Moreover, AGPAT2 and CDS1/2 can directly interact and form functional complexes, which promote the metabolism of PA along the CDP-DAG pathway of phospholipid synthesis. Our results provide key insights into the regulation of metabolic flux during lipid synthesis and suggest substrate channelling at a major branch point of the glycerol-3-phosphate pathway.
(© 2021. The Author(s).)
References: Olzmann, J. A. & Carvalho, P. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol. 20, 137–155 (2019). (PMID: 30523332674632910.1038/s41580-018-0085-z)
Farese, R. V. Jr. & Walther, T. C. Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 139, 855–860 (2009). (PMID: 19945371309713910.1016/j.cell.2009.11.005)
Yang, H., Galea, A., Sytnyk, V. & Crossley, M. Controlling the size of lipid droplets: lipid and protein factors. Curr. Opin. Cell Biol. 24, 509–516 (2012). (PMID: 2272658610.1016/j.ceb.2012.05.012)
Rosen, E. D. & Spiegelman, B. M. What we talk about when we talk about fat. Cell 156, 20–44 (2014). (PMID: 24439368393400310.1016/j.cell.2013.12.012)
Fei, W., Du, X. & Yang, H. Seipin, adipogenesis and lipid droplets. Trends Endocrinol. Metab. 22, 204–210 (2011). (PMID: 2149751310.1016/j.tem.2011.02.004)
Agarwal, A. K. Lysophospholipid acyltransferases: 1-acylglycerol-3-phosphate O-acyltransferases. From discovery to disease. Curr. Opin. Lipidol. 23, 290–302 (2012). (PMID: 2277729110.1097/MOL.0b013e328354fcf4)
Bradley, R. M. & Duncan, R. E. The lysophosphatidic acid acyltransferases (acylglycerophosphate acyltransferases) family: one reaction, five enzymes, many roles. Curr. Opin. Lipidol. 29, 110–115 (2018). (PMID: 2937332910.1097/MOL.0000000000000492)
Blunsom, N. J. & Cockcroft, S. CDP-Diacylglycerol synthases (CDS): gateway to phosphatidylinositol and cardiolipin synthesis. Front. Cell Dev. Biol. 8, 63 (2020). (PMID: 32117988701866410.3389/fcell.2020.00063)
Agarwal, A. K. et al. AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat. Genet. 31, 21–23 (2002). (PMID: 1196753710.1038/ng880)
Agarwal, A. K. et al. Human 1-acylglycerol-3-phosphate O-acyltransferase isoforms 1 and 2: biochemical characterization and inability to rescue hepatic steatosis in Agpat2(−/−) gene lipodystrophic mice. J. Biol. Chem. 286, 37676–37691 (2011). (PMID: 21873652319951110.1074/jbc.M111.250449)
Cortes, V. A. et al. Molecular mechanisms of hepatic steatosis and insulin resistance in the AGPAT2-deficient mouse model of congenital generalized lipodystrophy. Cell Metab. 9, 165–176 (2009). (PMID: 19187773267398010.1016/j.cmet.2009.01.002)
Cautivo, K. M. et al. AGPAT2 is essential for postnatal development and maintenance of white and brown adipose tissue. Mol. Metab. 5, 491–505 (2016). (PMID: 27408775492180410.1016/j.molmet.2016.05.004)
Gale, S. E. et al. A regulatory role for 1-acylglycerol-3-phosphate-O-acyltransferase 2 in adipocyte differentiation. J. Biol. Chem. 281, 11082–11089 (2006). (PMID: 1649522310.1074/jbc.M509612200)
Fei, W. et al. Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. J. Cell Biol. 180, 473–482 (2008). (PMID: 18250201223422610.1083/jcb.200711136)
Fei, W. et al. A role for phosphatidic acid in the formation of “supersized” lipid droplets. PLoS Genet. 7, e1002201 (2011). (PMID: 21829381314562310.1371/journal.pgen.1002201)
Pagac, M. et al. SEIPIN regulates lipid droplet expansion and adipocyte development by modulating the activity of glycerol-3-phosphate acyltransferase. Cell Rep. 17, 1546–1559 (2016). (PMID: 27806294564714310.1016/j.celrep.2016.10.037)
Yan, R. et al. Human SEIPIN binds anionic phospholipids. Dev. Cell 47, 248–256 e244 (2018). (PMID: 3029384010.1016/j.devcel.2018.09.010)
Soltysik, K. et al. Nuclear lipid droplets form in the inner nuclear membrane in a seipin-independent manner. J. Cell Biol, 220, https://doi.org/10.1083/jcb.202005026 (2021).
Tsukahara, T. et al. Phospholipase D2-dependent inhibition of the nuclear hormone receptor PPARgamma by cyclic phosphatidic acid. Mol. Cell 39, 421–432 (2010). (PMID: 20705243344678710.1016/j.molcel.2010.07.022)
Stapleton, C. M. et al. Lysophosphatidic acid activates peroxisome proliferator activated receptor-gamma in CHO cells that over-express glycerol 3-phosphate acyltransferase-1. PLoS ONE 6, e18932 (2011). (PMID: 21533082308037310.1371/journal.pone.0018932)
Shin, J. J. & Loewen, C. J. Putting the pH into phosphatidic acid signaling. BMC Biol. 9, 85 (2011). (PMID: 22136116322945210.1186/1741-7007-9-85)
Gao, M., Huang, X., Song, B. L. & Yang, H. The biogenesis of lipid droplets: lipids take center stage. Prog. Lipid Res. 75, 100989 (2019). (PMID: 3135109810.1016/j.plipres.2019.100989)
Chung, J. et al. LDAF1 and seipin form a lipid droplet assembly complex. Dev. Cell 51, 551–563 e557 (2019). (PMID: 31708432723593510.1016/j.devcel.2019.10.006)
Szymanski, K. M. et al. The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology. Proc. Natl Acad. Sci. USA 104, 20890–20895 (2007). (PMID: 18093937240923710.1073/pnas.0704154104)
Yamashita, A. et al. Glycerophosphate/acylglycerophosphate acyltransferases. Biology (Basel) 3, 801–830 (2014).
Walther, T. C., Chung, J. & Farese, R. V. Jr Lipid Droplet Biogenesis. Annu. Rev. Cell Dev. Biol. 33, 491–510 (2017). (PMID: 28793795698638910.1146/annurev-cellbio-100616-060608)
Kassan, A. et al. Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains. J. Cell Biol. 203, 985–1001 (2013). (PMID: 24368806387143410.1083/jcb.201305142)
Ben M’barek, K. et al. ER membrane phospholipids and surface tension control cellular lipid droplet formation. Dev. Cell 41, 591–604 e597 (2017). (PMID: 2857932210.1016/j.devcel.2017.05.012)
Wang, H. et al. Seipin is required for converting nascent to mature lipid droplets. eLife 5, https://doi.org/10.7554/eLife.16582 (2016).
Xu, Y. et al. CDP-DAG synthase 1 and 2 regulate lipid droplet growth through distinct mechanisms. J. Biol. Chem. 294, 16740–16755 (2019). (PMID: 31548309685129910.1074/jbc.RA119.009992)
Kassas, N. et al. Comparative characterization of phosphatidic acid sensors and their localization during frustrated phagocytosis. J. Biol. Chem. 292, 4266–4279 (2017). (PMID: 28115519535448310.1074/jbc.M116.742346)
Qi, Y. et al. CDP-diacylglycerol synthases regulate the growth of lipid droplets and adipocyte development. J. Lipid Res. 57, 767–780 (2016). (PMID: 26946540484762510.1194/jlr.M060574)
Srere, P. A. Complexes of sequential metabolic enzymes. Annu. Rev. Biochem. 56, 89–124 (1987). (PMID: 244166010.1146/annurev.bi.56.070187.000513)
Lee, J. & Ridgway, N. D. Substrate channeling in the glycerol-3-phosphate pathway regulates the synthesis, storage and secretion of glycerolipids. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865, 158438 (2020). (PMID: 3095911610.1016/j.bbalip.2019.03.010)
Reue, K. & Dwyer, J. R. Lipin proteins and metabolic homeostasis. J. Lipid Res. 50(Suppl.), S109–S114 (2009). (PMID: 18941140267471810.1194/jlr.R800052-JLR200)
Han, G. S., Wu, W. I. & Carman, G. M. The Saccharomyces cerevisiae Lipin homolog is a Mg 2+ -dependent phosphatidate phosphatase enzyme. J. Biol. Chem. 281, 9210–9218 (2006). (PMID: 1646729610.1074/jbc.M600425200)
Sankella, S., Garg, A., Horton, J. D. & Agarwal, A. K. Hepatic gluconeogenesis is enhanced by phosphatidic acid which remains uninhibited by insulin in lipodystrophic Agpat2−/− mice. J. Biol. Chem. 289, 4762–4777 (2014). (PMID: 24425876393103810.1074/jbc.M113.530998)
Salo, V. T. et al. Seipin regulates ER–lipid droplet contacts and cargo delivery. EMBO J. 35, 2699–2716 (2016). (PMID: 27879284516734610.15252/embj.201695170)
Du, X. & Yang, H. Seipin regulates the formation of nuclear lipid droplets from a distance. J. Cell Biol. 220, https://doi.org/10.1083/jcb.202011166 (2021).
Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013). (PMID: 24157548396986010.1038/nprot.2013.143)
Fueller, J. et al. CRISPR-Cas12a-assisted PCR tagging of mammalian genes. J. Cell Biol. 219, https://doi.org/10.1083/jcb.201910210 (2020).
Blunsom, N. J., Gomez-Espinosa, E., Ashlin, T. G. & Cockcroft, S. Mitochondrial CDP-diacylglycerol synthase activity is due to the peripheral protein, TAMM41 and not due to the integral membrane protein, CDP-diacylglycerol synthase 1. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1863, 284–298 (2018). (PMID: 2925358910.1016/j.bbalip.2017.12.005)
Ackerman, D. et al. Triglycerides promote lipid homeostasis during hypoxic stress by balancing fatty acid saturation. Cell Rep. 24, 2596–2605 e2595 (2018). (PMID: 30184495613782110.1016/j.celrep.2018.08.015)
Melamud, E., Vastag, L. & Rabinowitz, J. D. Metabolomic analysis and visualization engine for LC–MS data. Anal. Chem. 82, 9818–9826 (2010). (PMID: 21049934574889610.1021/ac1021166)
Yuan, J., Bennett, B. D. & Rabinowitz, J. D. Kinetic flux profiling for quantitation of cellular metabolic fluxes. Nat. Protoc. 3, 1328–1340 (2008). (PMID: 18714301271058110.1038/nprot.2008.131)
Lam, S. M. et al. A multi-omics investigation of the composition and function of extracellular vesicles along the temporal trajectory of COVID-19. Nat. Metab. 3, 909–922 (2021). (PMID: 3415867010.1038/s42255-021-00425-4)
Patel, K. et al. The LKB1-salt-inducible kinase pathway functions as a key gluconeogenic suppressor in the liver. Nat. Commun. 5, 4535 (2014). (PMID: 2508874510.1038/ncomms5535)
المشرفين على المادة: 0 (Cytidine Diphosphate Diglycerides)
0 (Fatty Acids)
0 (Multienzyme Complexes)
0 (Phosphatidic Acids)
2UMI9U37CP (Oleic Acid)
EC 2.3.- (Acyltransferases)
EC 2.3.1.52 (2-acylglycerophosphate acyltransferase)
EC 2.7.8.2 (Diacylglycerol Cholinephosphotransferase)
تواريخ الأحداث: Date Created: 20211126 Date Completed: 20211230 Latest Revision: 20221027
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC8616899
DOI: 10.1038/s41467-021-27279-4
PMID: 34824276
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-021-27279-4