دورية أكاديمية

Single cell-derived spheroids capture the self-renewing subpopulations of metastatic ovarian cancer.

التفاصيل البيبلوغرافية
العنوان: Single cell-derived spheroids capture the self-renewing subpopulations of metastatic ovarian cancer.
المؤلفون: Velletri T; Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.; Cogentech Società Benefit Srl, Parco Scientifico e Tecnologico della, Sicilia, 95121, Catania, Italy., Villa CE; Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.; Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy., Cilli D; Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy., Barzaghi B; Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy., Lo Riso P; Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy., Lupia M; Unit of Gynecological Oncology Research, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy., Luongo R; Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy., López-Tobón A; Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy., De Simone M; National Institute of Molecular Genetic (INGM), 'Romeo and Enrica Invernizzi', 20122, Milan, Italy., Bonnal RJP; National Institute of Molecular Genetic (INGM), 'Romeo and Enrica Invernizzi', 20122, Milan, Italy., Marelli L; Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy., Piccolo S; IFOM, the FIRC Institute of Molecular Oncology, 20139, Milan, Italy.; Department of Molecular Medicine (DMM), University of Padua School of Medicine, 35128, Padua, Italy., Colombo N; Division of Gynecologic Oncology, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy., Pagani M; National Institute of Molecular Genetic (INGM), 'Romeo and Enrica Invernizzi', 20122, Milan, Italy.; IFOM, the FIRC Institute of Molecular Oncology, 20139, Milan, Italy.; Department of Biosciences, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy., Cavallaro U; Unit of Gynecological Oncology Research, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy., Minucci S; Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy. saverio.minucci@ieo.it.; Department of Biosciences, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy. saverio.minucci@ieo.it., Testa G; Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy. giuseppe.testa@ieo.it.; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy. giuseppe.testa@ieo.it.
المصدر: Cell death and differentiation [Cell Death Differ] 2022 Mar; Vol. 29 (3), pp. 614-626. Date of Electronic Publication: 2021 Nov 29.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 9437445 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-5403 (Electronic) Linking ISSN: 13509047 NLM ISO Abbreviation: Cell Death Differ Subsets: MEDLINE
أسماء مطبوعة: Publication: <2003->: London : Nature Publishing Group
Original Publication: London : Edward Arnold, c1994-
مواضيع طبية MeSH: Ascites*/genetics , Ascites*/pathology , Ovarian Neoplasms*/pathology, Cell Line, Tumor ; Female ; Humans ; Precision Medicine ; Spheroids, Cellular/pathology
مستخلص: High Grade Serous Ovarian cancer (HGSOC) is a major unmet need in oncology, due to its precocious dissemination and the lack of meaningful human models for the investigation of disease pathogenesis in a patient-specific manner. To overcome this roadblock, we present a new method to isolate and grow single cells directly from patients' metastatic ascites, establishing the conditions for propagating them as 3D cultures that we refer to as single cell-derived metastatic ovarian cancer spheroids (sMOCS). By single cell RNA sequencing (scRNAseq) we define the cellular composition of metastatic ascites and trace its propagation in 2D and 3D culture paradigms, finding that sMOCS retain and amplify key subpopulations from the original patients' samples and recapitulate features of the original metastasis that do not emerge from classical 2D culture, including retention of individual patients' specificities. By enabling the enrichment of uniquely informative cell subpopulations from HGSOC metastasis and the clonal interrogation of their diversity at the functional and molecular level, this method provides a powerful instrument for precision oncology in ovarian cancer.
(© 2021. The Author(s).)
References: Prat J,FIGO Committee on Gynecologic Oncology FIGO’s staging classification for cancer of the ovary, fallopian tube, and peritoneum: abridged republication. J Gynecol Oncol. 2015;26:87–9. (PMID: 25872889439723710.3802/jgo.2015.26.2.87)
Steffensen KD, Alvero AB, Yang Y, Waldstrøm M, Hui P, Holmberg JC. et al. Prevalence of epithelial ovarian cancer stem cells correlates with recurrence in early-stage ovarian cancer. J Oncol. 2011;2011:620523. (PMID: 21904548316671910.1155/2011/620523)
Alison MR, Guppy NJ, Lim SML, Nicholson LJ. Finding cancer stem cells: are aldehyde dehydrogenases fit for purpose?. J Pathol. 2010;222:335–44. (PMID: 2084866310.1002/path.2772)
Moghbeli M, Moghbeli F, Forghanifard MM, Abbaszadegan MR. Cancer stem cell detection and isolation. Med Oncol. 2014;31:69. (PMID: 2506472910.1007/s12032-014-0069-6)
Bapat SA, Mali AM, Koppikar CB, Kurrey NK. Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res. 2005;65:3025–9. (PMID: 1583382710.1158/0008-5472.CAN-04-3931)
Rasheed ZA, Kowalski J, Smith BD, Matsui W. Concise review: emerging concepts in clinical targeting of cancer stem cells. Stem Cells. 2011;29:883–7. (PMID: 21509907335587110.1002/stem.648)
Vaughan S, Coward JI, Bast RC, Berchuck A, Berek JS, Brenton JD. et al. Rethinking ovarian cancer: recommendations for improving outcomes. Nat Rev Cancer. 2011;11:719–25. (PMID: 21941283338063710.1038/nrc3144)
Elias KM, Emori MM, Papp E, MacDuffie E, Konecny GE, Velculescu VE. et al. Beyond genomics: critical evaluation of cell line utility for ovarian cancer research. Gynecol Oncol. 2015;139:97–103. (PMID: 26321251458736010.1016/j.ygyno.2015.08.017)
Domcke S, Sinha R, Levine DA, Sander C, Schultz N. Evaluating cell lines as tumour models by comparison of genomic profiles. Nat Commun. 2013;4:2126. (PMID: 2383924210.1038/ncomms3126)
Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer. 2018;18:407–18. (PMID: 2969241510.1038/s41568-018-0007-6)
Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F. et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell. 2018;172:373–e10. (PMID: 2922478010.1016/j.cell.2017.11.010)
Huch M, Gehart H, van Boxtel R, Hamer K, Blokzijl F, Verstegen MMA. et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell. 2015;160:299–312. (PMID: 25533785431336510.1016/j.cell.2014.11.050)
Bartfeld S, Bayram T, van de Wetering M, Huch M, Begthel H, Kujala P. et al. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology. 2015;148:126–e6. (PMID: 2530786210.1053/j.gastro.2014.09.042)
Sato T, Stange DE, Ferrante M, Vries RGJ, Van Es JH, Van den Brink S. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011;141:1762–72. (PMID: 2188992310.1053/j.gastro.2011.07.050)
Beshiri ML, Tice CM, Tran C, Nguyen HM, Sowalsky AG, Agarwal S. et al. A pdx/organoid biobank of advanced prostate cancers captures genomic and phenotypic heterogeneity for disease modeling and therapeutic screening. Clin Cancer Res. 2018;24:4332–45. (PMID: 29748182612520210.1158/1078-0432.CCR-18-0409)
Roerink SF, Sasaki N, Lee-Six H, Young MD, Alexandrov LB, Behjati S. et al. Intra-tumour diversification in colorectal cancer at the single-cell level. Nature. 2018;556:457–62. (PMID: 2964351010.1038/s41586-018-0024-3)
Kessler M, Hoffmann K, Fritsche K, Brinkmann V, Mollenkopf H-J, Thieck O. et al. Chronic Chlamydia infection in human organoids increases stemness and promotes age-dependent CpG methylation. Nat Commun. 2019;10:1194. (PMID: 30886143642303310.1038/s41467-019-09144-7)
Kopper O, de Witte CJ, Lõhmussaar K, Valle-Inclan JE, Hami N, Kester L. et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat Med. 2019;25:838–49. (PMID: 3101120210.1038/s41591-019-0422-6)
Maru Y, Tanaka N, Itami M, Hippo Y. Efficient use of patient-derived organoids as a preclinical model for gynecologic tumors. Gynecol Oncol. 2019;154:189–98. (PMID: 3110150410.1016/j.ygyno.2019.05.005)
Hill SJ, Decker B, Roberts EA, Horowitz NS, Muto MG, Worley MJ. et al. Prediction of DNA repair inhibitor response in short-term patient-derived ovarian cancer organoids. Cancer Disco. 2018;8:1404–21. (PMID: 10.1158/2159-8290.CD-18-0474)
Weiswald L-B, Bellet D, Dangles-Marie V. Spherical cancer models in tumor biology. Neoplasia. 2015;17:1–15. (PMID: 25622895430968510.1016/j.neo.2014.12.004)
Lupia M, Angiolini F, Bertalot G, Freddi S, Sachsenmeier KF, Chisci E. et al. CD73 regulates stemness and epithelial-mesenchymal transition in ovarian cancer-initiating cells. Stem Cell Rep. 2018;10:1412–25. (PMID: 10.1016/j.stemcr.2018.02.009)
Francavilla C, Lupia M, Tsafou K, Villa A, Kowalczyk K, Rakownikow Jersie-Christensen R. et al. Phosphoproteomics of primary cells reveals druggable kinase signatures in ovarian cancer. Cell Rep. 2017;18:3242–56. (PMID: 28355574538223610.1016/j.celrep.2017.03.015)
Becht E, Dutertre C-A, Kwok IWH, Ng LG, Ginhoux F, Newell EW. Evaluation of UMAP as an alternative to t-SNE for single-cell data. BioRxiv. 2018. https://doi.org/10.1101/298430 .
McInnes L, Healy J. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv:1802.03426.
Haghverdi L, Buettner F, Theis FJ. Diffusion maps for high-dimensional single-cell analysis of differentiation data. Bioinformatics. 2015;31:2989–98. (PMID: 2600288610.1093/bioinformatics/btv325)
Coifman RR, Lafon S, Lee AB, Maggioni M, Nadler B, Warner F. et al. Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. Proc Natl Acad Sci USA. 2005;102:7426–31. (PMID: 15899970114042210.1073/pnas.0500334102)
Fang D, Chen H, Zhu JY, Wang W, Teng Y, Ding HF, et al. Epithelial-mesenchymal transition of ovarian cancer cells is sustained by Rac1 through simultaneous activation of MEK1/2 and Src signaling pathways. Oncogene. 2017;36:1546–58. (PMID: 2761757610.1038/onc.2016.323)
Thiery JP, Acloque H, Huang RYJ, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90. (PMID: 1994537610.1016/j.cell.2009.11.007)
Vergara D, Merlot B, Lucot J-P, Collinet P, Vinatier D, Fournier I. et al. Epithelial-mesenchymal transition in ovarian cancer. Cancer Lett. 2010;291:59–66. (PMID: 1988024310.1016/j.canlet.2009.09.017)
Takai M, Terai Y, Kawaguchi H, Ashihara K, Fujiwara S, Tanaka T. et al. The EMT (epithelial-mesenchymal-transition)-related protein expression indicates the metastatic status and prognosis in patients with ovarian cancer. J Ovarian Res. 2014;7:76. (PMID: 25296567412795010.1186/1757-2215-7-76)
Germain P-L, Vitriolo A, Adamo A, Laise P, Das V, Testa G. RNAontheBENCH: computational and empirical resources for benchmarking RNAseq quantification and differential expression methods. Nucleic Acids Res. 2016;44:5054–67. (PMID: 27190234491412810.1093/nar/gkw448)
Matter K, Balda MS. Signalling to and from tight junctions. Nat Rev Mol Cell Biol. 2003;4:225–36. (PMID: 1261264110.1038/nrm1055)
Filippi M-D. Mechanism of diapedesis: importance of the transcellular route. Adv Immunol. 2016;129:25–53. (PMID: 2679185710.1016/bs.ai.2015.09.001)
Deuster E, Jeschke U, Ye Y, Mahner S, Czogalla B. Vitamin D and VDR in gynecological cancers-a systematic review. Int J Mol Sci. 2017;18:2328. (PMID: 571329710.3390/ijms18112328)
Jeon S-M, Shin E-A. Exploring vitamin D metabolism and function in cancer. Exp Mol Med. 2018;50:1–14. (PMID: 30333528)
Bruney L, Liu Y, Grisoli A, Ravosa MJ, Stack MS. Integrin-linked kinase activity modulates the pro-metastatic behavior of ovarian cancer cells. Oncotarget. 2016;7:21968–81. (PMID: 26959113500833710.18632/oncotarget.7880)
Li W, Zhou Y, Zhang X, Yang Y, Dan S, Su T. et al. Dual inhibiting OCT4 and AKT potently suppresses the propagation of human cancer cells. Sci Rep. 2017;7:46246. (PMID: 28383051538278210.1038/srep46246)
Wang Y-J, Herlyn M. The emerging roles of Oct4 in tumor-initiating cells. Am J Physiol Cell Physiol. 2015;309:C709–18. (PMID: 26447206472544010.1152/ajpcell.00212.2015)
Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene. 2017;36:1461–73. (PMID: 2761757510.1038/onc.2016.304)
Beloribi-Djefaflia S, Vasseur S, Guillaumond F. Lipid metabolic reprogramming in cancer cells. Oncogenesis. 2016;5:e189. (PMID: 26807644472867810.1038/oncsis.2015.49)
Kuzu OF, Noory MA, Robertson GP. The role of cholesterol in cancer. Cancer Res. 2016;76:2063–70. (PMID: 27197250581347710.1158/0008-5472.CAN-15-2613)
Tania M, Khan MA, Song Y. Association of lipid metabolism with ovarian cancer. Curr Oncol. 2010;17:6–11. (PMID: 20975872294937310.3747/co.v17i5.668)
Li J, Condello S, Thomes-Pepin J, Ma X, Xia Y, Hurley TD. et al. Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells. Cell Stem Cell. 2017;20:303–e5. (PMID: 2804189410.1016/j.stem.2016.11.004)
Venkatesh V, Nataraj R, Thangaraj GS, Karthikeyan M, Gnanasekaran A, Kaginelli SB. et al. Targeting Notch signalling pathway of cancer stem cells. Stem Cell Investig. 2018;5:5. (PMID: 29682512589770810.21037/sci.2018.02.02)
QIAGEN Inc [Internet]. ingenuity pathway analysis. [cited 2018 Oct 4]. Available from: https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis .
Lane D, Matte I, Rancourt C, Piché A. Prognostic significance of IL-6 and IL-8 ascites levels in ovarian cancer patients. BMC Cancer. 2011;11:210. (PMID: 21619709311889610.1186/1471-2407-11-210)
Keith B, Simon MC. Hypoxia-inducible factors, stem cells, and cancer. Cell. 2007;129:465–72. (PMID: 17482542315058610.1016/j.cell.2007.04.019)
Cámara-Quílez M, Barreiro-Alonso A, Vizoso-Vázquez Á, Rodríguez-Belmonte E, Quindós-Varela M, Lamas-Maceiras M, et al. The HMGB1-2 Ovarian Cancer Interactome. The Role of HMGB proteins and their interacting partners MIEN1 and NOP53 in ovary cancer and drug-response. Cancers (Basel). 2020;12:2435. (PMID: 10.3390/cancers12092435)
Johnson DE, O’Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018;15:234–48. (PMID: 29405201585897110.1038/nrclinonc.2018.8)
Klymenko Y, Kim O, Stack MS. Complex determinants of epithelial: mesenchymal phenotypic plasticity in ovarian cancer. Cancers (Basel). 2017;9:104. (PMID: 10.3390/cancers9080104)
Nierode GJ, Perea BC, McFarland SK, Pascoal JF, Clark DS, Schaffer DV. et al. High-throughput toxicity and phenotypic screening of 3D human neural progenitor cell cultures on a microarray chip platform. Step Cell Rep. 2016;7:970–82. (PMID: 10.1016/j.stemcr.2016.10.001)
Sart S, Tomasi RF-X, Amselem G, Baroud CN. Multiscale cytometry and regulation of 3D cell cultures on a chip. Nat Commun. 2017;8:469. (PMID: 28883466558986310.1038/s41467-017-00475-x)
Carr SA, Abbatiello SE, Ackermann BL, Borchers C, Domon B, Deutsch EW. et al. Targeted peptide measurements in biology and medicine: best practices for mass spectrometry-based assay development using a fit-for-purpose approach. Mol Cell Proteom. 2014;13:907–17. (PMID: 10.1074/mcp.M113.036095)
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36:411–20. (PMID: 29608179670074410.1038/nbt.4096)
Fernandez NF, Gundersen GW, Rahman A, Grimes ML, Rikova K, Hornbeck P. et al. Clustergrammer, a web-based heatmap visualization and analysis tool for high-dimensional biological data. Sci Data. 2017;4:170151. (PMID: 28994825563432510.1038/sdata.2017.151)
تواريخ الأحداث: Date Created: 20211130 Date Completed: 20220419 Latest Revision: 20230209
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC8901794
DOI: 10.1038/s41418-021-00878-w
PMID: 34845371
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-5403
DOI:10.1038/s41418-021-00878-w