دورية أكاديمية

Early sensing of phosphate deprivation triggers the formation of extra root cap cell layers via SOMBRERO through a process antagonized by auxin signaling.

التفاصيل البيبلوغرافية
العنوان: Early sensing of phosphate deprivation triggers the formation of extra root cap cell layers via SOMBRERO through a process antagonized by auxin signaling.
المؤلفون: Ravelo-Ortega G; Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, México., Pelagio-Flores R; Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, México., López-Bucio J; Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, México., Campos-García J; Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, México., Reyes de la Cruz H; Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, México., López-Bucio JS; CONACYT-Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, México. jlopezb@conacyt.mx.
المصدر: Plant molecular biology [Plant Mol Biol] 2022 Jan; Vol. 108 (1-2), pp. 77-91. Date of Electronic Publication: 2021 Dec 02.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic Country of Publication: Netherlands NLM ID: 9106343 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-5028 (Electronic) Linking ISSN: 01674412 NLM ISO Abbreviation: Plant Mol Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: Dordrecht : Kluwer Academic
Original Publication: The Hague ; Boston : Martinus Nijhoff/Dr. W. Junk, 1981-
مواضيع طبية MeSH: Arabidopsis Proteins/*physiology , Indoleacetic Acids/*metabolism , Phosphates/*deficiency , Plant Growth Regulators/*physiology , Plant Root Cap/*growth & development , Transcription Factors/*physiology, Arabidopsis/growth & development ; Arabidopsis/metabolism ; Arabidopsis/physiology ; Gene Expression Regulation, Plant ; Meristem/growth & development ; Meristem/metabolism ; Meristem/physiology ; Plant Root Cap/cytology ; Plant Root Cap/metabolism ; Signal Transduction
مستخلص: Key Message: The role of the root cap in the plant response to phosphate deprivation has been scarcely investigated. Here we describe early structural, physiological and molecular changes prior to the determinate growth program of the primary roots under low Pi and unveil a critical function of the transcription factor SOMBRERO in low Pi sensing. Mineral nutrient distribution in the soil is uneven and roots efficiently adapt to improve uptake and assimilation of sparingly available resources. Phosphate (Pi) accumulates in the upper layers and thus short and branched root systems proliferate to better exploit organic and inorganic Pi patches. Here we report an early adaptive response of the Arabidopsis primary root that precedes the entrance of the meristem into the determinate developmental program that is a hallmark of the low Pi sensing mechanism. In wild-type seedlings transferred to low Pi medium, the quiescent center domain in primary root tips increases as an early response, as revealed by WOX5:GFP expression and this correlates with a thicker root tip with extra root cap cell layers. The halted primary root growth in WT seedlings could be reversed upon transfer to medium supplemented with 250 µM Pi. Mutant and gene expression analysis indicates that auxin signaling negatively affects the cellular re-specification at the root tip and enabled identification of the transcription factor SOMBRERO as a critical element that orchestrates both the formation of extra root cap layers and primary root growth under Pi scarcity. Moreover, we provide evidence that low Pi-induced root thickening or the loss-of-function of SOMBRERO is associated with expression of phosphate transporters at the root tip. Our data uncover a developmental window where the root tip senses deprivation of a critical macronutrient to improve adaptation and surveillance.
(© 2021. The Author(s), under exclusive licence to Springer Nature B.V.)
References: Arnaud C, Bonnot C, Desnos T, Nussaume L (2010) The root cap at the forefront. C R Biol 333:335–343. https://doi.org/10.1016/j.crvi.2010.01.011. (PMID: 10.1016/j.crvi.2010.01.01120371108)
Balzergue C, Dartevelle T, Godon C, Laugier E, Meisrimler C, Teulon JM, Creff A, Bissler M, Brouchoud C, Hagège A et al (2017) Low phosphate activates STOP1-ALMT1 to rapidly inhibit root cell elongation. Nat Commun 8:15300. https://doi.org/10.1038/ncomms15300. (PMID: 10.1038/ncomms15300285042665440667)
Bates TR, Lynch JP (1996) Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant Cell Environ 19:529–538. https://doi.org/10.1111/j.1365-3040.1996.tb00386.x. (PMID: 10.1111/j.1365-3040.1996.tb00386.x)
Belal R, Tang R, Li Y, Mabrouk Y, Badri E, Luan S (2015) An ABC transporter complex encoded by Aluminum Sensitive 3 and NAP3 is required for phosphate deficiency responses in Arabidopsis. Biochem Biophys Res Commun 463(2):18–23. https://doi.org/10.1016/j.bbrc.2015.05.009. (PMID: 10.1016/j.bbrc.2015.05.00925983320)
Bennett T, van der Toom A, Sánchez-Perez GF, Campilho A, Willemsen V, Snel B, Scheres B (2010) SOMBRERO, BEARSKIN1, and BEARSKIN2 regulate root cap maturation in Arabidopsis. Plant Cell 22:640–654. https://doi.org/10.1105/tpc.109.072272. (PMID: 10.1105/tpc.109.072272201975062861445)
Bhosale R, Giri J, Pandey BK, Giehl RFH, Hartmann A, Traini R, Truskina J, Leftley N, Hanlon M, Swarup K, Rashed A, VoB U, Alonso J, Stepanova A, Yun J, Ljung K, Brown KM, Lynch JP, Dolan L, Vernoux T, Bishopp A, Wells D, von Wirén N, Bennet MJ, Swarup R (2018) A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate. Nat Commun 9:1409. https://doi.org/10.1038/s41467-018-03851-3. (PMID: 10.1038/s41467-018-03851-3296511145897496)
Colón-Carmona A, You R, Haimovitch-Gal T, Doerner P (1999) Spatio-temporal analysis of mitotic activity with a labile cyclin-GUS fusion protein. Plant J 20:503–508. https://doi.org/10.1046/j.1365-313x.1999.00620.x. (PMID: 10.1046/j.1365-313x.1999.00620.x10607302)
Ding Z, Friml J (2010) Auxin regulates distal stem cell differentiation in Arabidopsis roots. Proc Natl Acad Sci USA 107:12046–12051. https://doi.org/10.1073/pnas.1000672107. (PMID: 10.1073/pnas.1000672107205431362900669)
Dissanayaka DM, Ghahremani M, Siebers M, Wasaki J, Plaxton WC (2021) Recent insights into the metabolic adaptations of phosphorus-deprived plants. J Exp Bot 72:199–223. https://doi.org/10.1093/jxb/eraa482. (PMID: 10.1093/jxb/eraa48233211873)
Dong J, Piñeros MA, Li X, Yang H, Liu Y, Murphy AS, Kochian LV, Liu D (2017) An Arabidopsis ABC transporter mediates phosphate deficiency-induced remodeling of root architecture by modulating iron homeostasis in roots. Mol Plant 10:244–259. https://doi.org/10.1016/j.molp.2016.11.001. (PMID: 10.1016/j.molp.2016.11.00127847325)
Drisch RC, Stahl Y (2015) Function and regulation of transcription factors involved in root apical meristem and stem cell maintenance. Front Plant Sci 6:505. https://doi.org/10.3389/fpls.2015.00505. (PMID: 10.3389/fpls.2015.00505262173594491714)
Fendrych M, Van Hautegem T, Van Durme M, Olvera-Carrillo Y, Huysmans M, Karimi M, Lippens S, Guérin CJ, Krebs M, Schumacher K, Nowack MK (2014) Programmed cell death controlled by ANAC033/SOMBRERO determines root cap organ size in Arabidopsis. Curr Biol 24:931–940. https://doi.org/10.1016/j.cub.2014.03.025. (PMID: 10.1016/j.cub.2014.03.02524726156)
Fukaki H, Tameda S, Masuda H, Tasaka M (2002) Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J 29:153–168. https://doi.org/10.1046/j.0960-7412.2001.01201.x. (PMID: 10.1046/j.0960-7412.2001.01201.x11862947)
Goh T, Joi S, Mimura T, Fukaki H (2012) The establishment of asymmetry in Arabidopsis lateral root founder cells is regulated by LBD16/ASL18 and related LBD/ASL proteins. Development 139:883–893. https://doi.org/10.1242/dev.071928. (PMID: 10.1242/dev.07192822278921)
Gutiérrez-Alanís D, Yong-Villalobos L, Jiménez-Sandoval P, Alatorre-Cobos F, Oropeza-Aburto A, Mora-Macías J, Sánchez-Rodríguez F, Cruz-Ramírez A, Herrera-Estrella L (2017) Phosphate starvation-dependent iron mobilization induces CLE14 expression to trigger root meristem differentiation through CLV2/PEPR2 signaling. Dev Cell 41:555–570. https://doi.org/10.1016/j.devcel.2017.05.009. (PMID: 10.1016/j.devcel.2017.05.00928586647)
Huang KL, Ma GJ, Zhang ML, Xiong H, Wu H, Zhao CZ, Liu CS, Jia HX, Chen L, Kjorven JO, Li XB, Ren F (2018) The ARF7 and ARF19 transcription factors positively regulate PHOSPHATE STARVATION RESPONSE1 in Arabidopsis roots. Plant Cell 178:413–427. https://doi.org/10.1104/pp.17.01713. (PMID: 10.1104/pp.17.01713)
Kanno S, Arrighi JF, Chiarenza S, Bayle V, Berthomé R, Péret B, Javot H, Delannoy E, Marin E, Nakanishi TM, Thibaud MC, Nussaume L (2016) A novel role for the root cap in the phosphate uptake and homeostasis. eLife 5:e14577. https://doi.org/10.7554/eLife.14577.001. (PMID: 10.7554/eLife.14577.001270506164829427)
Karthikeyan SA, Varadarajan DK, Mukatira UT, D’Urzo MP, Damsz B, Raghothama KG (2002) Regulated expression of Arabidopsis phosphate transporters. Plant Physiol 130:221–233. https://doi.org/10.1104/pp.020007. (PMID: 10.1104/pp.02000712226502166555)
Kumpf RP, Nowack MK (2015) The root cap: a short story of life and death. J Exp Bot 66:5651–5662. https://doi.org/10.1093/jxb/erv295. (PMID: 10.1093/jxb/erv29526068468)
Lincoln C, Britton JH, Estelle M (1990) Growth and development of the axr1 mutants of Arabidopsis. Plant Cell 2:1071–1080. https://doi.org/10.1105/tpc.2.11.1071. (PMID: 10.1105/tpc.2.11.10711983791159955)
López-Arredondo D, Leyva-González MA, González-Morales S, López-Bucio J, Herrera-Estrella L (2014) Phosphate nutrition: improving low phosphate tolerance in crops. Annu Rev Plant Biol 65:95–123. https://doi.org/10.1146/annurev-arplant-050213-035949. (PMID: 10.1146/annurev-arplant-050213-03594924579991)
López-Bucio J, Guevara-García A, de la Martínez O, Herrera-Estrella L (2000) Enhanced phosphorus uptake in tobacco transgenic plants that overproduce citrate. Nat Biotechnol 18:450–453. https://doi.org/10.1038/74531. (PMID: 10.1038/7453110748530)
López-Bucio J, Hernández-Abreu E, Sánchez-Calderón L, Nieto-Jacobo MF, Simpson J, Herrera-Estrella L (2002) Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopis root system. Plant Physiol 129:244–256. https://doi.org/10.1104/pp.010934. (PMID: 10.1104/pp.01093412011355155888)
López-Bucio JS, Salmerón-Barrera GJ, Ravelo-Ortega G, Raya-González J, León P, de la Reyes H, Campos-García J, López-Bucio J, Guevara-García AA (2019) Mitogen-activated protein kinase 6 integrates phosphate and iron responses for indeterminate root growth in Arabidopsis thaliana. Planta 250:1177–1189. https://doi.org/10.1007/s00425-019-03212-4. (PMID: 10.1007/s00425-019-03212-431190117)
Misson J, Thibaud MC, Bechtold N, Raghothama K, Nussaume L (2004) Transcriptional regulation and functional properties of Arabidopsis Pht1;4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants. Plant Mol Biol 55:727–741. https://doi.org/10.1007/s11103-004-1965-5. (PMID: 10.1007/s11103-004-1965-515604713)
Mora-Macías J, Ojeda-Rivera JO, Gutiérrez-Alanís D, Yong-Villalobos L, Oropeza-Aburto A, Raya-González J, Jiménez-Domínguez G, Chávez-Calvillo G, Rellán-Álvarez R, Herrera-Estrella L (2017) Malate-dependent Fe accumulation is a critical checkpoint in the root developmental response to low phosphate. Proc Natl Acad Sci USA 114:E3563–E3572. https://doi.org/10.1073/pnas.1701952114. (PMID: 10.1073/pnas.1701952114284005105410833)
Müller J, Toev T, Heisters M, Teller J, Moore KL, Hause G, Dinesh DC, Bürstenbinder K, Abel S (2015) Iron-dependent callose depositions adjust root meristem maintenance to phosphate availability. Dev Cell 33:216–230. https://doi.org/10.1016/j.devcel.2015.02.007. (PMID: 10.1016/j.devcel.2015.02.00725898169)
Murakawa M, Ohta H, Shimojima M (2019) Lipid remodeling under acidic conditions and its interplay with low Pi stress in Arabidopsis. Plant Mol Biol 101:81–93. (PMID: 10.1007/s11103-019-00891-1)
Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M (2007) ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 19:118–130. https://doi.org/10.1105/tpc.106.047761. (PMID: 10.1105/tpc.106.047761172592631820965)
Ottenschläger I, Wolff P, Wolverton C, Bhalerao RP, Sandberg G, Ishikawa H, Evans M, Palme K (2003) Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc Natl Acad Sci USA 100:2987–2991. https://doi.org/10.1073/pnas.0437936100. (PMID: 10.1073/pnas.043793610012594336151453)
Pérez-Torres A, López-Bucio J, Cruz-Ramírez A, Ibarra-Laclette E, Dharmasiri S, Estelle M, Herrera-Estrella L (2008) Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell 20:3258–3272. https://doi.org/10.1105/tpc.108.058719. (PMID: 10.1105/tpc.108.058719191063752630440)
Pi L, Aichinger E, van der Graaff E, Llavata-Peris CI, Weijers D, Hennig L, Groot E, Laux T (2015) Organizer-derived WOX5 signal maintains root columella stem cells through chromatin-mediated repression of CDF4 expression. Dev Cell 33:576–588. https://doi.org/10.1016/j.devcel.2015.04.024. (PMID: 10.1016/j.devcel.2015.04.02426028217)
Raya-González J, Ojeda‐Rivera JO, Mora‐Macias J, Oropeza‐Aburto A, Ruiz‐Herrera LF, López‐Bucio J, Herrera‐Estrella L (2021) MEDIATOR16 orchestrates local and systemic responses to phosphate scarcity in Arabidopsis roots. New Phytol 229:1278–1288. https://doi.org/10.1111/nph.16989. (PMID: 10.1111/nph.1698933034045)
Ruíz-Herrera LF, López-Bucio J (2013) Aluminum induces low phosphate adaptive responses and modulates primary and lateral root growth by differentially affecting auxin signaling in Arabidopsis seedlings. Plant Soil 371:593–609. https://doi.org/10.1007/s11104-013-1722-0. (PMID: 10.1007/s11104-013-1722-0)
Ruiz-Herrera LF, Shane MW, López-Bucio J (2015) Nutritional regulation of root development. Wiley Interdiscip Rev: Dev Biol 4:431–443. https://doi.org/10.1002/wdev.183. (PMID: 10.1002/wdev.183)
Sahu A, Banerjee S, Raju AS, Chiou TJ, García LR, Versaw WK (2020) Spatial profiles of phosphate in roots indicate developmental control of uptake, recycling, and sequestration. Plant Physiol 184:2064–2077. https://doi.org/10.1104/pp.20.01008. (PMID: 10.1104/pp.20.01008329990067723077)
Sánchez-Calderón L, López-Bucio J, Chacón-López A, Cruz-Ramírez A, Nieto-Jacobo F, Dubrovsky JG, Herrera-Estrella L (2005) Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant Cell Physiol 46:174–184. https://doi.org/10.1093/pcp/pci011. (PMID: 10.1093/pcp/pci01115659445)
Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashimoto T, Nakajima K, Scheres B, Heidstra R, Laux T (2007) Conserved factors regulate signaling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446:811–814. https://doi.org/10.1038/nature05703. (PMID: 10.1038/nature0570317429400)
Savina MS, Pasternak T, Omelyanchuk AN, Novikova DD, Palme K, Mironova VV, Lavrekha VV (2020) Cell Dynamics in WOX5-Overexpressiong root tips: the impact of local auxin biosynthesis. Front Plant Sci 11:560169. https://doi.org/10.3389/fpls.2020.560169. (PMID: 10.3389/fpls.2020.560169331934867642516)
Svistoonoff S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, Blanchet A, Nussaume L, Desnos T (2007) Root tip contact with low-phosphate media reprograms plant root architecture. Nat Genet 6:792–796. https://doi.org/10.1038/ng2041. (PMID: 10.1038/ng2041)
Ticconi CA, Lucero RD, Sakhonwasee S, Adamson AW, Creff A, Nus-saume L, Desnos T, Abel S (2009) ER-resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability. Proc Natl Acad Sci USA 106(33):14174–14179. https://doi.org/10.1073/pnas.0901778106. (PMID: 10.1073/pnas.0901778106196664992723163)
Willemsen V, Bauch M, Bennett T, Campilho A, Wolkenfelt H, Xu J, Haselhoff J, Scheres B (2008) The NAC domain transcription factors FEZ and SOMBRERO control the orientation of cell division plane in Arabidopsis root stem cells. Dev Cell 15:913–922. https://doi.org/10.1016/j.devcel.2008.09.019. (PMID: 10.1016/j.devcel.2008.09.01919081078)
Williamson LC, Ribrioux SPCP, Fitter AH, Leyser HMO (2001) Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol 126:875–882. https://doi.org/10.1104/pp.126.2.875. (PMID: 10.1104/pp.126.2.87511402214111176)
Wilmoth JC, Wang S, Tiwari SB, Joshi AD, Hagen G, Guilfoyle TJ, Alonso JM, Ecker JR, Reed JW (2005) NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. Plant J 43:118–130. https://doi.org/10.1111/j.1365-313X.2005.02432.x. (PMID: 10.1111/j.1365-313X.2005.02432.x15960621)
Xuan W, Band LR, Kumpf RP, Van Damme D, Parizot B, De Rop G, Opdenacker D, Möller BK, Skorzinski N, Njo MF, De Rybel B, Audenaert D, Nowack MK, Vanneste S, Beeckman T (2016) Cyclic programmed cell death stimulates hormone signaling and root development in Arabidopsis. Science 351:384–387. https://doi.org/10.1126/science.aad2776. (PMID: 10.1126/science.aad277626798015)
Zheng H, Pan X, Deng Y, Wu H, Liu P, Li X (2016) AtOPR3 specifically inhibits primary root growth in Arabidopsis under phosphate deficiency. Sci Rep 6:24778. https://doi.org/10.1038/srep24778. (PMID: 10.1038/srep24778271017934840450)
معلومات مُعتمدة: FORDECYT-PRONACES/377863/2020 consejo nacional de ciencia y tecnología méxico
فهرسة مساهمة: Keywords: Arabidopsis; Auxin; Phosphate deprivation; Root cap
المشرفين على المادة: 0 (Arabidopsis Proteins)
0 (Indoleacetic Acids)
0 (Phosphates)
0 (Plant Growth Regulators)
0 (SOMBRERO protein, Arabidopsis)
0 (Transcription Factors)
تواريخ الأحداث: Date Created: 20211202 Date Completed: 20220125 Latest Revision: 20220430
رمز التحديث: 20240829
DOI: 10.1007/s11103-021-01224-x
PMID: 34855067
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-5028
DOI:10.1007/s11103-021-01224-x