دورية أكاديمية

Copy number variants in genomes of local sheep breeds from Russia.

التفاصيل البيبلوغرافية
العنوان: Copy number variants in genomes of local sheep breeds from Russia.
المؤلفون: Igoshin AV; The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia., Deniskova TE; L.K. Ernst Federal Research Center for Animal Husbandry, Podolsk, 142132, Russia., Yurchenko AA; The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia., Yudin NS; The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia.; Novosibirsk State University, Novosibirsk, 630090, Russia., Dotsev AV; L.K. Ernst Federal Research Center for Animal Husbandry, Podolsk, 142132, Russia., Selionova MI; Russian State Agrarian University, Moscow Timiryazev Agricultural Academy, Moscow, 127550, Russia., Zinovieva NA; L.K. Ernst Federal Research Center for Animal Husbandry, Podolsk, 142132, Russia., Larkin DM; The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia.; Royal Veterinary College, University of London, London, NW1 0TU, UK.
المصدر: Animal genetics [Anim Genet] 2022 Feb; Vol. 53 (1), pp. 119-132. Date of Electronic Publication: 2021 Dec 13.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: England NLM ID: 8605704 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2052 (Electronic) Linking ISSN: 02689146 NLM ISO Abbreviation: Anim Genet Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford, England : Wiley-Blackwell
Original Publication: Oxford, England : Published by Blackwell Scientific Publications for the International Society for Animal Blood Group Research, c1986-
مواضيع طبية MeSH: DNA Copy Number Variations* , Genome*, Sheep, Domestic/*genetics, Animals ; Russia ; Wool
مستخلص: Copy number variants (CNVs) are genomic structural variations that contribute to many adaptive and economically important traits in livestock. In this study, we detected CNVs in 354 animals from 16 Russian indigenous sheep breeds and analysed their possible functional roles. Our analysis of the entire sample set resulted in 4527 CNVs forming 1450 CNV regions (CNVRs). When constructing CNVRs for individual breeds, a total of 2715 regions ranging from 88 in Groznensk to 337 in Osetin breeds were identified. To make interbreed CNVR frequency comparison possible, we also identified core CNVRs using CNVs with overlapping chromosomal locations found in different breeds. This resulted in 137 interbreed CNVRs with frequency >15% in at least one breed. Functional enrichment analysis of genes affected by CNVRs in individual breeds revealed 12 breeds with significant enrichments in olfactory perception, PRAME family proteins, and immune response. Function of genes affected by interbreed and breed-specific CNVRs revealed candidates related to domestication, adaptation to high altitudes and cold climates, reproduction, parasite resistance, milk and meat qualities, wool traits, fat storage, and fat metabolism. Our work is the first attempt to uncover and characterise the CNV makeup of Russian indigenous sheep breeds. Further experimental and functional validation of CNVRs would help in developing new and improving existing sheep breeds.
(© 2021 Stichting International Foundation for Animal Genetics.)
References: Alberto F.J., Boyer F., Orozco-terWengel P. et al. (2018) Convergent genomic signatures of domestication in sheep and goats. Nature Communications 9, 813.
Armstrong E., Iriarte A., Nicolini P., De Los Santos J., Ithurralde J., Bielli A., Bianchi G. & Peñagaricano F. (2018) Comparison of transcriptomic landscapes of different lamb muscles using RNA-Seq. PLOS ONE, 13, e0200732. https://doi.org/10.1371/journal.pone.0200732.
Bergen N.J., Ahmed S.M., Collins F. et al. (2020) Mutations in the exocyst component EXOC2 cause severe defects in human brain development. The Journal of experimental medicine 217, e20192040.
Bishop D.K., Ear U., Bhattacharyya A., Calderone C., Beckett M., Weichselbaum R.R. & Shinohara A. (1998) Xrcc3 is required for assembly of Rad51 complexes in vivo. Journal of Biological Chemistry 273, 21482-8.
Bland J.M. & Kerry S.M. (1998) Statistics notes. Weighted comparison of means. British Medical Journal 316, 129.
Bu P., Jian Z., Koshy J., Shen Y., Yue B. & Fan Z. (2019) The olfactory subgenome and specific odor recognition in forest musk deer. Animal Genetics 50, 358-66.
Cheng J., Cao X., Hanif Q., Pi L., Hu L., Huang Y., Lan X., Lei C. & Chen H. (2020) Integrating genome-wide CNVs Into QTLs and high confidence GWAScore regions identified positional candidates for sheep economic traits. Frontiers in Genetics 11, 569.
Cole J.B., Wiggans G.R., Ma L. et al. (2011) Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in contemporary U.S. Holstein cows. BMC Genomics 12, 408.
Colella S., Yau C., Taylor J.M., Mirza G., Butler H., Clouston P., Bassett A.S., Seller A., Holmes C.C. & Ragoussis J. (2007) QuantiSNP: an objective Bayes Hidden-Markov Model to detect and accurately map copy number variation using SNP genotyping data. Nucleic Acids Research 35, 2013-25.
Cooper G.M., Nickerson D.A. & Eichler E.E. (2007) Mutational and selective effects on copy-number variants in the human genome. Nature Genetics 39, S22-9.
Di Gerlando R., Sutera A.M., Mastrangelo S., Tolone M., Portolano B., Sottile G., Bagnato A., Strillacci M.G. & Sardina M.T. (2019) Genome-wide association study between CNVs and milk production traits in Valle del Belice sheep. PLoS One 14, e0215204.
Dmitriev N.G. & Ernst L.K. (1989) Animal Genetic Resources of the USSR. Rome: FAO, p 517.
Dunin I.M. & Dankvert A.G. (2013) Breeds and Types of Farm Animals in the Russian Federation. Moscow, Russian Federation: Ministry of Agriculture.
Eckel-Passow J.E., Atkinson E.J., Maharjan S., Kardia S.L. & de Andrade M. (2011) Software comparison for evaluating genomic copy number variation for Affymetrix 6.0 SNP array platform. BMC Bioinformatics 12, 220.
Fontanesi L., Beretti F., Martelli P.L., Colombo M., Dall'Olio S., Occidente M., Portolano B., Casadio R., Matassino D. & Russo V. (2011) A first comparative map of copy number variations in the sheep genome. Genomics 97, 158-65.
Gao L., Bonilla-Henao V., García-Flores P., Arias-Mayenco I., Ortega-Sáenz P. & López-Barneo J. (2017) Gene expression analyses reveal metabolic specifications in acute O2-sensing chemoreceptor cells. Journal of Physiology 595, 6091-120.
García-Fernández M., Gutiérrez-Gil B., García-Gámez E., Sánchez J.P. & Arranz J.J. (2010) The identification of QTL that affect the fatty acid composition of milk on sheep chromosome 11. Animal Genetics 41, 324-8.
Gochiyaev H.N., Gadzhiev Z.K., Selkin I.I. & Albegonova R.D. (2007) Harakteristika shersti ovec grubosherstnyh porod. Selskohozyajstvennyj Zhurnal 1, 50-3.
Goyal P., Weissmann N., Grimminger F. et al. (2004) Upregulation of NAD(P)H oxidase 1 in hypoxia activates hypoxia-inducible factor 1 via increase in reactive oxygen species. Free Radical Biology & Medicine 36, 1279-88.
Guryev V., Saar K., Adamovic T. et al. (2008) Distribution and functional impact of DNA copy number variation in the rat. Nature Genetics 40, 538-45.
Haliburton G.D., McKinsey G.L. & Pollard K.S. (2016) Disruptions in a cluster of computationally identified enhancers near FOXC1 and GMDS may influence brain development. Neurogenetics 17, 1-9.
Hong H., Xu L., Liu J. et al. (2012) Technical reproducibility of genotyping SNP arrays used in genome-wide association studies. PLoS One 7, e44483.
Hou C.-L., Meng F.-H., Wang W. et al. (2015) Genome-wide analysis of copy number variations in Chinese sheep using array comparative genomic hybridization. Small Ruminant Research 12, 19-26.
Huang D., Sherman B.T. & Lempicki R.A. (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols 4, 44-57.
Ihaka R. & Gentleman R. (1996) R: a language for data analysis and graphics. Journal of Computational and Graphical Statistics 5, 299-314.
Ikehata H. & Ono T. (2011) The mechanisms of UV mutagenesis. Journal of Radiation Research 52, 115-25.
Jenkins G.M., Goddard M.E., Black M.A., Brauning R., Auvray B., Dodds K.G., Kijas J.W., Cockett N. & McEwan J.C. (2016) Copy number variants in the sheep genome detected using multiple approaches. BMC Genomics 17, 441.
Jiang L.I., Liu X., Yang J., Wang H., Jiang J., Liu L., He S., Ding X., Liu J. & Zhang Q. (2014) Targeted resequencing of GWAS loci reveals novel genetic variants for milk production traits. BMC Genomics 15, 1105.
Kader A., Liu X., Dong K., Song S., Pan J., Yang M., Chen X., He X., Jiang L. & Ma Y. (2016) Identification of copy number variations in three Chinese horse breeds using 70K single nucleotide polymorphism BeadChip array. Animal Genetics 47, 560-9.
Kaloev B.A. (1993) Skotovodstvo narodov Severnogo Kavkaza: S drevneishikh vremen do nachala XX veka [Cattle-raising of Peoples of North Caucasus: From Antiquity to the beginning of XX century]. Moscow: Nauka, In Russian, p 231.
Kaloev B.A. (2004) Osetiny: Istoriko-etnograficheskoe issledovanie [Ossetians: Historical-Ethnographical Studies]. Moscow: Nauka, In Russian, p 471.
Keller M. & Lévy F. (2012) The main but not the accessory olfactory system is involved in the processing of socially relevant chemosignals in ungulates. Frontiers in Neuroanatomy 6, 39.
Kim J.H., Hu H.J., Yim S.H., Bae J.S., Kim S.Y. & Chung Y.J. (2012) CNVRuler: a copy number variation-based case-control association analysis tool. Bioinformatics 28, 1790-2.
Korn J.M., Kuruvilla F.G., McCarroll S.A. et al. (2008) Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs. Nature Genetics 40, 1253-60.
Kruska D. (1988) Effects of domestication on brain structure and behavior in mammals. Human Evolution 3, 473-85.
Kuhn R.M., Haussler D. & Kent W.J. (2013) The UCSC genome browser and associated tools. Briefings in Bioinformatics 14, 144-61.
Larimer F.W., Perry J.R. & Hardigree A.A. (1989) The REV1 gene of Saccharomyces cerevisiae: isolation, sequence, and functional analysis. Journal of Bacteriology 171, 230-7.
Lee Y.L., Bosse M., Mullaart E., Groenen M., Veerkamp R.F. & Bouwman A.C. (2020) Functional and population genetic features of copy number variations in two dairy cattle populations. BMC Genomics 21, 89.
Li M., Tian S., Jin L. et al. (2013) Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nature Genetics 45, 1431-8.
Li Q., Jimenez-Krassel F., Ireland J.J. & Smith G.W. (2009) Gene expression profiling of bovine preovulatory follicles: gonadotropin surge and prostanoid-dependent up-regulation of genes potentially linked to the ovulatory process. Reproduction 137, 297-307.
Li X., Yang J.I., Shen M. et al. (2020) Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits. Nature Communications 11, 2815.
Lin P., Hartz S.M., Wang J.-C. et al. (2011) Copy number variation accuracy in genome-wide association studies. Human Heredity 71, 141-7.
Liu F., Chen Y., Zhu G.U. et al. (2018) Meta-analysis of genome-wide association studies identifies 8 novel loci involved in shape variation of human head hair. Human Molecular Genetics 27, 559-75.
Liu J., Zhang L.I., Xu L. et al. (2013) Analysis of copy number variations in the sheep genome using 50K SNP BeadChip array. BMC Genomics 14, 229.
Ma Q., Liu X., Pan J., Ma L., Ma Y., He X., Zhao Q., Pu Y., Li Y. & Jiang L. (2017) Genome-wide detection of copy number variation in Chinese indigenous sheep using an ovine high-density 600 K SNP array. Scientific Reports 7, 912.
Ma Y., Zhang Q., Lu Z., Zhao X. & Zhang Y. (2015) Analysis of copy number variations by SNP50 BeadChip array in Chinese sheep. Genomics 106, 295-300.
Macé A., Tuke M.A., Beckmann J.S., Lin L., Jacquemont S., Weedon M.N., Reymond A. & Kutalik Z. (2016) New quality measure for SNP array based CNV detection. Bioinformatics 32, 3298-305.
Magalhães A.F.B., de Camargo G.M.F., Fernandes G.A. et al. (2016) Genome-wide association study of meat quality traits in Nellore cattle. PLoS One 11, e0157845.
Malec V., Gottschald O.R., Li S., Rose F., Seeger W., Hänze J. (2010) HIF-1 alpha signaling is augmented during intermittent hypoxia by induction of the Nrf2 pathway in NOX1-expressing adenocarcinoma A549 cells. Free Radical Biology & Medicine 48, 1626-35.
Marenne G., Rodríguez-Santiago B., Closas M.G. et al. (2011) Assessment of copy number variation using the Illumina Infinium 1M SNP-array: a comparison of methodological approaches in the Spanish Bladder Cancer/EPICURO study. Human Mutation 32, 240-8.
Mills R.E., Walter K., Stewart C. et al. (2011) Mapping copy number variation by population-scale genome sequencing. Nature 470, 59-65.
Nguyen D.Q., Webber C. & Ponting C.P. (2006) Bias of selection on human copy-number variants. PLoS Genetics 2, e20.
Nozawa M., Kawahara Y. & Nei M. (2007) Genomic drift and copy number variation of sensory receptor genes in humans. Proceedings of the National Academy of Sciences, USA 104, 20421-6.
Palombo V., Milanesi M., Sgorlon S., Capomaccio S., Mele M., Nicolazzi E., Ajmone-Marsan P., Pilla F., Stefanon B. & D'Andrea M. (2018) Genome-wide association study of milk fatty acid composition in Italian Simmental and Italian Holstein cows using single nucleotide polymorphism arrays. Journal of Dairy Science 101, 11004-19.
Paudel Y., Madsen O., Megens H.J., Frantz L.A., Bosse M., Bastiaansen J.W., Crooijmans R.P. & Groenen M.A. (2013) Evolutionary dynamics of copy number variation in pig genomes in the context of adaptation and domestication. BMC Genomics 14, 449.
Paudel Y., Madsen O., Megens H.J., Frantz L.A., Bosse M., Crooijmans R.P. & Groenen M.A. (2015) Copy number variation in the speciation of pigs: a possible prominent role for olfactory receptors. BMC Genomics 16, 330.
Perry G.H. (2008) The evolutionary significance of copy number variation in the human genome. Cytogenetic and Genome Research 123, 283-7.
Pickrell J.K. & Pritchard J.K. (2012) Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genetics 8, e1002967.
Pinto D., Darvishi K., Shi X. et al. (2011) Comprehensive assessment of array-based platforms and calling algorithms for detection of copy number variants. Nature Biotechnology 29, 512-20.
Purcell S., Neale B., Todd-Brown K. et al. (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics 81, 559-75.
Rao Y.S., Li J., Zhang R. et al. (2016) Copy number variation identification and analysis of the chicken genome using a 60K SNP BeadChip. Poultry Science 95, 1750-6.
Rinker D.C., Specian N.K., Zhao S. & Gibbons J.G. (2019) Polar bear evolution is marked by rapid changes in gene copy number in response to dietary shift. Proceedings of the National Academy of Sciences, USA 116, 13446-51.
Ruiz-Larrañaga O., Langa J., Rendo F., Manzano C., Iriondo M. & Estonba A. (2018) Genomic selection signatures in sheep from the Western Pyrenees. Genetics, Selection, Evolution 50, 9.
Sasaki S., Watanabe T., Nishimura S. & Sugimoto Y. (2016) Genome-wide identification of copy number variation using high-density single-nucleotide polymorphism array in Japanese Black cattle. BMC Genetics 17, 26.
Serres-Armero A., Povolotskaya I.S., Quilez J. et al. (2017) Similar genomic proportions of copy number variation within gray wolves and modern dog breeds inferred from whole genome sequencing. BMC Genomics 18, 977.
Silva V.H., Regitano L.C., Geistlinger L., Pértille F., Giachetto P.F., Brassaloti R.A., Morosini N.S., Zimmer R. & Coutinho L.L. (2016) Genome-wide detection of CNVs and their association with meat tenderness in Nelore Cattle. PLoS One 11, e0157711.
Stafuzza N.B., Silva R., Fragomeni B.O., Masuda Y., Huang Y., Gray K. & Lourenco D. (2019) A genome-wide single nucleotide polymorphism and copy number variation analysis for number of piglets born alive. BMC Genomics 20, 321.
Strillacci M.G., Marelli S.P., Milanesi R., Zaniboni L., Punturiero C. & Cerolini S. (2021) Copy number variants in four Italian turkey breeds. Animals: An Open Access Journal from MDPI 11, 391.
Sutera A.M., Riggio V., Mastrangelo S., Di Gerlando R., Sardina M.T., Pong-Wong R., Tolone M. & Portolano B. (2019) Genome-wide association studies for milk production traits in Valle del Belice sheep using repeated measures. Animal Genetics 50, 311-4.
Sweet-Jones J., Yurchenko A.A., Igoshin A.V., Yudin N.S., Swain M.T. & Larkin D.M. (2020) Resequencing and signatures of selection scan in two Siberian native sheep breeds point to candidate genetic variants for adaptation and economically important traits. Animal Genetics 52, 126-31.
Upadhyay M., da Silva V.H., Megens H.-J. et al. (2017) Distribution and functionality of copy number variation across European cattle populations. Frontiers in Genetics 8, 108.
Viterbi A.J. (1967) Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory 13, 260-9.
Wang J., Zou H., Chen L. et al. (2017) Convergent and divergent genetic changes in the genome of Chinese and European pigs. Scientific Reports 7, 8662.
Wang K., Li M., Hadley D., Liu R., Glessner J., Grant S.F., Hakonarson H. & Bucan M. (2007) PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Research 17, 1665-74.
Wang W., Zhang X., Zhou X. et al. (2019) Deep genome resequencing reveals artificial and natural selection for visual deterioration, plateau adaptability and high prolificacy in Chinese domestic sheep. Frontiers in Genetics 10, 300.
Wang X., Liu J., Zhou G. et al. (2016) Whole-genome sequencing of eight goat populations for the detection of selection signatures underlying production and adaptive traits. Scientific Reports 6, 38932.
Wang Z., Guo J., Guo Y. et al. (2020) Genome-wide detection of CNVs and association with body weight in sheep based on 600K SNP arrays. Frontiers in Genetics 11, 558.
Waszak S.M., Hasin Y., Zichner T., Olender T., Keydar I., Khen M., Stütz A.M., Schlattl A., Lancet D. & Korbel J.O. (2010) Systematic inference of copy-number genotypes from personal genome sequencing data reveals extensive olfactory receptor gene content diversity. PLoS Computational Biology 6, e1000988.
Winchester L., Yau C. & Ragoussis J. (2009) Comparing CNV detection methods for SNP arrays. Briefings in Functional Genomics & Proteomics 8, 353-66.
Winsey S.L., Haldar N.A., Marsh H.P., Bunce M., Marshall S.E., Harris A.L., Wojnarowska F. & Welsh K.I. (2000) A variant within the DNA repair gene XRCC3 is associated with the development of melanoma skin cancer. Cancer Research 60, 5612-6.
Yan J., Blair H.T., Liu M., Li W., He S., Chen L., Dittmer K.E., Garrick D.J., Biggs P.J. & Dukkipati V.S.R. (2017) Genome-wide detection of autosomal copy number variants in several sheep breeds using Illumina OvineSNP50 BeadChips. Small Ruminant Research 155, 24-32.
Yang L., Xu L., Zhou Y., Liu M., Wang L., Kijas J.W., Zhang H., Li L. & Liu G.E. (2018) Diversity of copy number variation in a worldwide population of sheep. Genomics 110, 143-8.
Yang Y., Wang L., Han J., Tang X., Ma M., Wang K., Zhang X., Ren Q., Chen Q. & Qiu Q. (2015) Comparative transcriptomic analysis revealed adaptation mechanism of Phrynocephalus erythrurus, the highest altitude Lizard living in the Qinghai-Tibet Plateau. BMC Evolutionary Biology 15, 101.
Ye Z.Q., Niu S., Yu Y. et al. (2010) Analyses of copy number variation of GK rat reveal new putative type 2 diabetes susceptibility loci. PLoS One 5, e14077.
Yurchenko A.A., Deniskova T.E., Yudin N.S. et al. (2019) High-density genotyping reveals signatures of selection related to acclimation and economically important traits in 15 local sheep breeds from Russia. BMC Genomics 20, 294.
Zhang X., Wang K., Wang L., Yang Y., Ni Z., Xie X., Shao X., Han J., Wan D. & Qiu Q. (2016) Genome-wide patterns of copy number variation in the Chinese yak genome. BMC Genomics 17, 379.
Zhang X., Zhang S., Ma L., Jiang E., Xu H., Chen R., Yang Q., Chen H., Li Z. & Lan X. (2017) Reduced representation bisulfite sequencing (RRBS) of dairy goat mammary glands reveals DNA methylation profiles of integrated genome-wide and critical milk-related genes. Oncotarget 8, 115326-44.
Zhang Y.-M., Zhang X.-Z., Wang T.-T., Hopkins D.L., Mao Y.-W., Liang R.-R., Yang G.-F., Luo X. & Zhu L.-X. (2018) Implications of step-chilling on meat color investigated using proteome analysis of the sarcoplasmic protein fraction of beef longissimus lumborum muscle. Journal of Integrative Agriculture 17, 2118-25.
Zhou C., Li C., Cai W., Liu S., Yin H., Shi S., Zhang Q. & Zhang S. (2019) Genome-wide association study for milk protein composition traits in a Chinese Holstein population using a single-step approach. Frontiers in Genetics 10, 72.
Zhu C., Fan H., Yuan Z. et al. (2016) Genome-wide detection of CNVs in Chinese indigenous sheep with different types of tails using ovine high-density 600K SNP arrays. Scientific Reports 6, 27822.
معلومات مُعتمدة: 19-76-20026 Russian Science Foundation; 21-66-00007 Russian Science Foundation
فهرسة مساهمة: Keywords: PennCNV; Russian Federation; adaptation; copy number variant regions; copy number variants; economically important trait; local sheep breeds
تواريخ الأحداث: Date Created: 20211214 Date Completed: 20220120 Latest Revision: 20220120
رمز التحديث: 20231215
DOI: 10.1111/age.13163
PMID: 34904242
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-2052
DOI:10.1111/age.13163