دورية أكاديمية

The Influence of Matrix-Induced Dormancy on Metastatic Breast Cancer Chemoresistance.

التفاصيل البيبلوغرافية
العنوان: The Influence of Matrix-Induced Dormancy on Metastatic Breast Cancer Chemoresistance.
المؤلفون: Farino CJ; Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States., Pradhan S; Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States., Slater JH; Department of Biomedical Engineering and Department of Material Science and Engineering, University of Delaware, Newark, Delaware 19716, United States; Delaware Biotechnology Institute, Newark, Delaware 19711, United States.
المصدر: ACS applied bio materials [ACS Appl Bio Mater] 2020 Sep 21; Vol. 3 (9), pp. 5832-5844. Date of Electronic Publication: 2020 Aug 06.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: ACS Publications Country of Publication: United States NLM ID: 101729147 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2576-6422 (Electronic) Linking ISSN: 25766422 NLM ISO Abbreviation: ACS Appl Bio Mater Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: Washington, DC : ACS Publications, [2018]-
مستخلص: Metastasis remains the leading cause of cancer-associated death worldwide. Disseminated tumor cells can undergo dormancy upon infiltration of secondary organs, and chemotherapeutics fail to effectively eliminate dormant populations. Mechanistic understanding of dormancy-associated chemoresistance could lead to development of targeted therapeutic strategies. Toward this goal, we implemented three poly(ethylene glycol) (PEG)-based hydrogel formulations fabricated from proteolytically degradable PEG (PEG-PQ), integrin ligating PEG-RGDS, and the non-degradable cross-linker N -vinylpyrrolidone (NVP) to induce three distinct phenotypes in triple negative MDA-MB-231 breast cancer cells. With constant 5% w/v PEG-PQ, PEG-RGDS and NVP concentrations were tuned to induce (i) a growth state characterized by high proliferation, high metabolic activity, significant temporally increased cell density, and an invasive morphology; (ii) a balanced dormancy state characterized by a temporal balance (~1:1 ratio) in new live and dead cell density and a non-invasive morphology; and (iii) a cellular dormancy state characterized by rounded, solitary quiescent cells with low viability, proliferation, and metabolic activity. The cellular responses to doxorubicin (DOX), paclitaxel (PAC), and 5-fluorouracil (5-FU) in the three phenotypic states were quantified. Under DOX treatment, cells in dormant states demonstrated increased chemoresistance with a 1.4- to 1.8-fold increase in half maximal effective concentration (EC 50 ) and 1.3- to 1.8-fold increase in half maximal inhibitory concentration (IC 50 ) compared to cells in the growth state. PAC and 5-FU treatment led to similar results. To mechanistically investigate the role of dormancy in conferring DOX resistance, cytoplasmic and nuclear accumulation of DOX was measured. The results indicated comparable DOX accumulation between all three phenotypic states; however, the intracellular to intranuclear distribution indicated a ~1.5 fold increase in DOX nuclear accumulation in cells in the growth state compared to the two dormant states. These results further validate the utility of implementing engineered hydrogels as in vitro platforms of breast cancer dormancy for the development of anti-dormancy therapeutic strategies.
References: J Transl Med. 2016 Feb 04;14:38. (PMID: 26847768)
Clin Cancer Res. 1999 Jul;5(7):1703-7. (PMID: 10430072)
MethodsX. 2019 Nov 13;6:2744-2766. (PMID: 31828024)
Clin Cancer Res. 2004 Dec 15;10(24):8152-62. (PMID: 15623589)
Breast Cancer Res Treat. 1997 Mar;43(1):7-14. (PMID: 9065594)
Data Brief. 2019 Jun 11;25:104128. (PMID: 31312698)
Nat Cell Biol. 2013 Jul;15(7):807-17. (PMID: 23728425)
Cancer Res. 2000 Sep 1;60(17):4761-6. (PMID: 10987283)
APMIS. 2008 Jul-Aug;116(7-8):569-85. (PMID: 18834403)
Nat Rev Cancer. 2007 Nov;7(11):834-46. (PMID: 17957189)
J Pharmacol Exp Ther. 2008 Jan;324(1):95-102. (PMID: 17947497)
Clin Cancer Res. 2011 May 1;17(9):2967-76. (PMID: 21415211)
Breast Cancer Res. 2007;9(3):208. (PMID: 17561992)
Clin Cancer Res. 2005 May 15;11(10):3678-85. (PMID: 15897564)
Oncol Rep. 2018 Apr;39(4):1765-1774. (PMID: 29436672)
Radiat Res. 2014 Feb;181(2):111-30. (PMID: 24397478)
Biomed Opt Express. 2016 May 25;7(6):2400-6. (PMID: 27375954)
Biomaterials. 2019 Sep;215:119177. (PMID: 31176804)
Mol Pharmacol. 2005 Dec;68(6):1699-707. (PMID: 16141312)
Front Immunol. 2018 Aug 02;9:1681. (PMID: 30116236)
Nat Rev Cancer. 2015 Apr;15(4):238-47. (PMID: 25801619)
Oncol Rep. 2015 Apr;33(4):1837-43. (PMID: 25634491)
Acta Biomater. 2018 Sep 1;77:85-95. (PMID: 30030173)
Front Oncol. 2018 Sep 12;8:381. (PMID: 30258818)
J Cell Biol. 2004 Oct 11;167(1):27-33. (PMID: 15479734)
Anticancer Res. 2009 Oct;29(10):4019-24. (PMID: 19846945)
Am J Pathol. 2012 Jun;180(6):2490-503. (PMID: 22521303)
Cancer Lett. 2010 Aug 28;294(2):139-46. (PMID: 20363069)
Nat Commun. 2015 Dec 03;6:8983. (PMID: 26632274)
Assay Drug Dev Technol. 2014 May;12(4):207-18. (PMID: 24831787)
Biochem Biophys Res Commun. 2005 Nov 11;337(1):224-31. (PMID: 16176802)
PLoS One. 2013 May 10;8(5):e63188. (PMID: 23675461)
Mol Oncol. 2016 Oct 7;11(1):62-78. (PMID: 28017284)
Philos Trans R Soc Lond B Biol Sci. 2019 Aug 19;374(1779):20180226. (PMID: 31431182)
BMC Cancer. 2018 Jan 6;18(1):41. (PMID: 29304770)
Oncotarget. 2017 Jul 26;8(45):78466-78479. (PMID: 29108242)
Cancer Res. 2017 May 15;77(10):2564-2569. (PMID: 28507050)
J Biol Eng. 2018 Dec 27;12:37. (PMID: 30603045)
PLoS One. 2009;4(2):e4632. (PMID: 19247489)
React Oxyg Species (Apex). 2016;2(6):432-439. (PMID: 29707647)
Exp Oncol. 2011 Jun;33(2):78-82. (PMID: 21716203)
Cancer Res. 2002 Apr 1;62(7):2162-8. (PMID: 11929839)
Am J Pathol. 1998 Sep;153(3):865-73. (PMID: 9736035)
Br J Cancer. 1993 Nov;68(5):898-908. (PMID: 8105865)
Nat Med. 2011 Mar;17(3):320-9. (PMID: 21383745)
J Cell Sci. 2007 Aug 1;120(Pt 15):2672-82. (PMID: 17635998)
Eur J Cancer. 2010 May;46(7):1181-8. (PMID: 20304630)
J Clin Oncol. 2012 Feb 10;30(5):525-32. (PMID: 22253462)
Biomedicine (Taipei). 2017 Dec;7(4):23. (PMID: 29130448)
Cancer Res. 2014 Dec 1;74(23):6745-9. (PMID: 25411346)
Biochim Biophys Acta. 2014 Jan;1845(1):84-9. (PMID: 24361676)
Mol Biol Cell. 2012 Jan;23(1):1-6. (PMID: 22210845)
Science. 2011 Mar 25;331(6024):1559-64. (PMID: 21436443)
Biochim Biophys Acta. 1996 Oct 23;1284(2):240-6. (PMID: 8914590)
EMBO J. 2005 Oct 5;24(19):3470-81. (PMID: 16148948)
Cancer Res. 2006 Feb 1;66(3):1702-11. (PMID: 16452230)
Cancer Chemother Rep. 1972 Oct;56(5):563-71. (PMID: 4652587)
J Photochem Photobiol B. 2017 May;170:65-69. (PMID: 28390260)
J Clin Oncol. 2000 Jan;18(1):80-6. (PMID: 10623696)
معلومات مُعتمدة: P20 GM103446 United States GM NIGMS NIH HHS; R21 CA214299 United States CA NCI NIH HHS
فهرسة مساهمة: Keywords: drug screening; extracellular matrix; latency; metastasis; tissue engineering
تواريخ الأحداث: Date Created: 20211216 Latest Revision: 20220210
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC8670599
DOI: 10.1021/acsabm.0c00549
PMID: 34913030
قاعدة البيانات: MEDLINE
الوصف
تدمد:2576-6422
DOI:10.1021/acsabm.0c00549