دورية أكاديمية

Recombinant Vaccine Design Against Clostridium spp. Toxins Using Immunoinformatics Tools.

التفاصيل البيبلوغرافية
العنوان: Recombinant Vaccine Design Against Clostridium spp. Toxins Using Immunoinformatics Tools.
المؤلفون: Rodrigues RR; Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil., Ferreira MRA; Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil., Kremer FS; Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil., Donassolo RA; Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil., Júnior CM; Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil., Alves MLF; Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil., Conceição FR; Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil. fabricio.rochedo@ufpel.edu.br.
المصدر: Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2022; Vol. 2412, pp. 457-470.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 9214969 Publication Model: Print Cited Medium: Internet ISSN: 1940-6029 (Electronic) Linking ISSN: 10643745 NLM ISO Abbreviation: Methods Mol Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: Totowa, NJ : Humana Press
Original Publication: Clifton, N.J. : Humana Press,
مواضيع طبية MeSH: Computational Biology* , Vaccine Development*, Animals ; Antigens ; Clostridium ; Epitopes/genetics ; Epitopes, T-Lymphocyte ; Vaccines, Synthetic/genetics
مستخلص: The emergence of recombinant DNA technology has led to the exploration of the use of the technology to develop novel vaccines. With a fundamental role in vaccines design, several immunoinformatics tools have been created to identify isolated epitopes that stimulate a specific immune response, contributing to effective vaccines development. In the past, vaccine development projects relied entirely on animal experimentation, a relatively expensive and time-consuming process. Currently, use of immunoinformatics tools play a vital role in the antigen analysis and refinement, allowing the identification of possible protective epitopes capable of stimulating convenient humoral or cellular immune responses, in addition to facilitating time and cost reduction of vaccine production. The vaccination aimed at bacterial species of Clostridium spp. has been considered a promising example of use of these approaches in recent years. Based on the literature search, it is possible to understand the best immunoinformatics software used by researchers that facilitate recombinant vaccine antigens design and development. This chapter presents an overview of how these tools are supporting the antigen engineering, aiming at increasing the efficiency of inducing protective immune response in animals.
(© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Popoff MR, Bouvet P (2009) Clostridial toxins. Future Microbiol 4:1021–1064. (PMID: 10.2217/fmb.09.72)
Riley TV, Lyras D, Douce GR (2019) Status of vaccine research and development for Clostridium difficile. Vaccine 37(50):7300–7306. (PMID: 10.1016/j.vaccine.2019.02.052)
Bazmara S, Shadmani M, Ghasemnejad A, Aghazadeh H et al (2019) In silico rational design of a novel tetra-epitope tetanus vaccine with complete population coverage using developed immunoinformatics and surface epitope mapping approaches. Med Hypotheses 130:109267. (PMID: 10.1016/j.mehy.2019.109267)
Ferreira MRA, Moreira GMSG, Da Cunha CEP, Mendonça M et al (2016) Recombinant alpha, beta, and epsilon toxins of Clostridium perfringens: production strategies and applications as veterinary vaccines. Toxins 8(11):340. (PMID: 10.3390/toxins8110340)
Chauhan V, Singh MP (2020) Immuno-informatics approach to design a multi-epitope vaccine to combat cytomegalovirus infection. Eur J Pharm Sci 147:105279. (PMID: 10.1016/j.ejps.2020.105279)
Zhou J, Wang L, Zhou A, Lu G, Li Q, Wang Z, Zhu M, Zhou H, Cong H, He S (2016) Bioinformatics analysis and expression of a novel protein ROP48 in Toxoplasma gondii. Acta Parasitol 61:319–328. (PMID: 10.1515/ap-2016-0042)
Wang Y (2020) Bioinformatics analysis of NetF proteins for designing a multi-epitope vaccine against Clostridium perfringens infection. Infect Genet Evol 85:2–9.
Nazarian S, Mousavi Gargari SL, Rasooli I, Amani J et al (2012) An in silico chimeric multi subunit vaccine targeting virulence factors of enterotoxigenic Escherichia coli (ETEC) with its bacterial inbuilt adjuvant. J Microbiol Methods 90(1):36–45. (PMID: 10.1016/j.mimet.2012.04.001)
Nosrati M, Hajizade A, Nazarian S, Amani J et al (2019) Designing a multi-epitope vaccine for cross-protection against Shigella spp: an immunoinformatics and structural vaccinology study. Mol Immunol 116:106–116. (PMID: 10.1016/j.molimm.2019.09.018)
Kazi A, Chuah C, Majeed ABA, Leow CH et al (2018) Current progress of immunoinformatics approach harnessed for cellular- and antibody-dependent vaccine design. Pathog Glob Health 112(3):123–131. (PMID: 10.1080/20477724.2018.1446773)
Saha S, Raghava G (2006) Prediction of continuous B‐cell epitopes in an antigen using recurrent neural network. Proteins: Structure, Function, and Bioinformatics 65(1):40–48.
Jespersen MC, Peters B, Nielsen M, Marcatili P (2017) BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucl Acids Res 45(1):24–29.
Kringelum J V, Lundegaard C, Lund O, Nielsen M (2012) Reliable B cell epitope predictions: impacts of method development and improved benchmarking. PLoS Comput Biol 8(12):e1002829.
Ponomarenko J, Bui H H, Li W, Fusseder N, Bourne P E, Sette A, Peters B (2008) ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinform 9(1):1–8.
Ansari H R, Raghava G P (2010) Identification of conformational B-cell Epitopes in an antigen from its primary sequence. Immun Res 6(1):1–9.
EL‐Manzalawy Y, Dobbs D, Honavar V (2008) Predicting linear B‐cell epitopes using string kernels. J Mol Recognit: An Interdiscip J 21(4):243–255.
Andreatta M, Nielsen, M (2016) Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics 32(4):511–517.
Jensen K K, Andreatta M, Marcatili P, Buus S, Greenbaum J A, Yan Z, Nielsen M (2018) Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology 154(3):394–406.
DeLano W L (2002) Pymol: An open-source molecular graphics tool. CCP4 Newslett Prot Crystallogr 40(1):82–92.
Lomize M A, Pogozheva I D, Joo H, Mosberg H I, Lomize A L (2012) OPM database and PPM web server: resources for positioning of proteins in membranes. Nucl Acids Res 40(1):370–376.
Morris G M, Lim-Wilby M (2008) Molecular docking. In Molecular modeling of proteins. Humana Press 365–382.
Chen X, Zaro J L, Shen W C (2013) Fusion protein linkers: property, design and functionality. Adv Drug Delivery Rev 65(10):1357–1369.
Amet N, Lee H F, Shen W C (2009) Insertion of the designed helical linker led to increased expression of tf-based fusion proteins. Pharma Res 26(3):523–528.
Bai Y, Shen W C (2006) Improving the oral efficacy of recombinant granulocyte colony-stimulating factor and transferrin fusion protein by spacer optimization. Pharma Res 23(9):2116–2121.
Doytchinova I A, Flower D R (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform 8(1):1–7.
Sharma N, Patiyal S, Dhall A, Pande A, Arora C, Raghava G P (2021) AlgPred 2.0: an improved method for predicting allergenic proteins and mapping of IgE epitopes. Brief Bioinform 22(4):bbaa294.
Gasteiger E, Hoogland C, Gattiker A, Wilkins M R, Appel R D, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. The Proteomics Protocols Handbook 571–607.
Källberg M, Wang H, Wang S, Peng J Wang Z, Lu H, Xu J (2012) Template-based protein structure modeling using the RaptorX web server. Nat Protoc 7(8):1511–1522.
Ko J, Park H, Heo L, Seo C (2012) GalaxyWEB server for protein structure prediction and refinement. Nucl Acids Res 40(1):294–297.
Wiederstein M, Sippl M J (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucl Acids Res 35(2):407–410.
فهرسة مساهمة: Keywords: Bioinformatics; Clostridiosis; Recombinant antigens; Recombinant vaccines
المشرفين على المادة: 0 (Antigens)
0 (Epitopes)
0 (Epitopes, T-Lymphocyte)
0 (Vaccines, Synthetic)
تواريخ الأحداث: Date Created: 20211217 Date Completed: 20220120 Latest Revision: 20220120
رمز التحديث: 20221213
DOI: 10.1007/978-1-0716-1892-9_25
PMID: 34918262
قاعدة البيانات: MEDLINE
الوصف
تدمد:1940-6029
DOI:10.1007/978-1-0716-1892-9_25