دورية أكاديمية

Polycaprolactone usage in additive manufacturing strategies for tissue engineering applications: A review.

التفاصيل البيبلوغرافية
العنوان: Polycaprolactone usage in additive manufacturing strategies for tissue engineering applications: A review.
المؤلفون: Backes EH; Materials Engineering Department, Graduate Program in Materials Science and Engineering, Federal University of São Carlos, São Carlos, Brazil., Harb SV; Materials Engineering Department, Graduate Program in Materials Science and Engineering, Federal University of São Carlos, São Carlos, Brazil., Beatrice CAG; Materials Engineering Department, Graduate Program in Materials Science and Engineering, Federal University of São Carlos, São Carlos, Brazil., Shimomura KMB; Materials Engineering Department, Graduate Program in Materials Science and Engineering, Federal University of São Carlos, São Carlos, Brazil., Passador FR; Science and Technology Institute, Federal University of São Paulo, São Paulo, Brazil., Costa LC; Materials Engineering Department, Graduate Program in Materials Science and Engineering, Federal University of São Carlos, São Carlos, Brazil., Pessan LA; Materials Engineering Department, Graduate Program in Materials Science and Engineering, Federal University of São Carlos, São Carlos, Brazil.
المصدر: Journal of biomedical materials research. Part B, Applied biomaterials [J Biomed Mater Res B Appl Biomater] 2022 Jun; Vol. 110 (6), pp. 1479-1503. Date of Electronic Publication: 2021 Dec 17.
نوع المنشور: Journal Article; Review; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: John Wiley & Sons Country of Publication: United States NLM ID: 101234238 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1552-4981 (Electronic) Linking ISSN: 15524973 NLM ISO Abbreviation: J Biomed Mater Res B Appl Biomater Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Hoboken, NJ : John Wiley & Sons, c2003-
مواضيع طبية MeSH: Tissue Engineering*/methods , Tissue Scaffolds*, Polyesters ; Porosity ; Printing, Three-Dimensional
مستخلص: Polycaprolactone (PCL) has been extensively applied on tissue engineering because of its low-melting temperature, good processability, biodegradability, biocompatibility, mechanical resistance, and relatively low cost. The advance of additive manufacturing (AM) technologies in the past decade have boosted the fabrication of customized PCL products, with shorter processing time and absence of material waste. In this context, this review focuses on the use of AM techniques to produce PCL scaffolds for various tissue engineering applications, including bone, muscle, cartilage, skin, and cardiovascular tissue regeneration. The search for optimized geometry, porosity, interconnectivity, controlled degradation rate, and tailored mechanical properties are explored as a tool for enhancing PCL biocompatibility and bioactivity. In addition, rheological and thermal behavior is discussed in terms of filament and scaffold production. Finally, a roadmap for future research is outlined, including the combination of PCL struts with cell-laden hydrogels and 4D printing.
(© 2021 Wiley Periodicals LLC.)
References: Woodruff MA, Hutmacher DW. The return of a forgotten polymer-Polycaprolactone in the 21st century. Prog Polym Sci. 2010;35:1217-1256. https://linkinghub.elsevier.com/retrieve/pii/S0079670010000419.
Attaran M. The rise of 3-D printing: the advantages of additive manufacturing over traditional manufacturing. Business horizons. Kelley School Business Ind Uni. 2017;60:677-688. doi:10.1016/j.bushor.2017.05.011.
Jakus AE, Rutz AL, Shah RN. Advancing the field of 3D biomaterial printing. Biomedical materials. IOP Pub. 2016;11:14102. doi:10.1088/1748-6041/11/1/014102.
Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015;9:4 http://www.jbioleng.org/content/9/1/4.
Camacho P, Busari H, Seims KB, Schwarzenberg P, Dailey HL, Chow LW. 3D printing with peptide-polymer conjugates for single-step fabrication of spatially functionalized scaffolds. Biomater Sci. 2019;7:4237-4247.
Valainis D, Dondl P, Foehr P, et al. Integrated additive design and manufacturing approach for the bioengineering of bone scaffolds for favorable mechanical and biological properties. Biomed Mater. 2019;14:65002. doi:10.1088/1748-605X/ab38c6.
Maskery I, Sturm L, Aremu AO, et al. Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing. Polymer. 2018;152:62-71. doi:10.1016/j.polymer.2017.11.049.
Kulkarni A, Reiche J, Hartmann J, Kratz K, Lendlein A. Selective enzymatic degradation of poly(ε-caprolactone) containing multiblock copolymers. Eur J Pharm Biopharm. 2008;68:46-56. https://linkinghub.elsevier.com/retrieve/pii/S0939641107002536.
Dong L, Wang S-J, Zhao X-R, Zhu Y-F, Yu J-K. 3D- printed poly(ε-caprolactone) scaffold integrated with cell-laden chitosan hydrogels for bone tissue engineering. Scientific reports. Springer US. 2017;7:13412. doi:10.1038/s41598-017-13838-7.
Caetano GF, Wang W, Chiang W-H, et al. 3D-printed poly(ɛ-caprolactone)/Graphene scaffolds activated with P1-latex protein for bone regeneration. 3d Print Addit Manuf. 2018;5:127-137.
Neufurth M, Wang X, Wang S, et al. 3D printing of hybrid biomaterials for bone tissue engineering: calcium-polyphosphate microparticles encapsulated by polycaprolactone. Acta Biomater. 2017;64:377-388. doi:10.1016/j.actbio.2017.09.031.
Lin YH, Chiu YC, Shen YF, Wu YHA, Shie MY. Bioactive calcium silicate/poly-ε-caprolactone composite scaffolds 3D printed under mild conditions for bone tissue engineering. J Mater Sci: Mater Med. 2018;29:11.
Oladapo BI, Oshin EA, Olawumi AM. Nanostructural computation of 4D printing carboxymethylcellulose (CMC) composite. Nano Struct Nano Object. 2020;21:100423 https://linkinghub.elsevier.com/retrieve/pii/S2352507X20300019.
Oladapo BI, Malachi IO, Malachi OB, Elemure IE, Olawumi AM. Nano-structures of 4D morphology surface analysis of C1.7 Mn0.6 P0.1 S0.07 (SAE 1045) tool wear. Nano Struct Nano Object. 2020;22:100433 https://linkinghub.elsevier.com/retrieve/pii/S2352507X20300111.
Gu BK, Choi DJ, Park SJ, Kim MS, Kang CM, Kim C-H. 3-dimensional bioprinting for tissue engineering applications. Biomat Res. 2016;20:12. doi:10.1186/s40824-016-0058-2.
Alagoz AS, Hasirci V. 3D printing of polymeric tissue engineering scaffolds using open-source fused deposition modeling. Emerg Mater. 2020;3:429-439. doi:10.1007/s42247-019-00048-2.
Jammalamadaka U, Tappa K. Recent advances in biomaterials for 3D printing and tissue engineering. J Func Biomater. 2018;9:22 http://www.mdpi.com/2079-4983/9/1/22.
Chen X, Chen G, Wang G, Zhu P, Gao C. Recent Progress on 3D-printed Polylactic acid and its applications in bone repair. Adv Eng Mater. 2020;22:1901065. doi:10.1002/adem.201901065.
Hutmacher DW, Schantz JT, Lam CXF, Tan KC, Lim TC. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med. 2007;1:245-260.
Bose S, Koski C, Vu AA. Additive manufacturing of natural biopolymers and composites for bone tissue engineering. Mater Horiz. 2020;7:2011-2027.
Joseph B, James J, Grohens Y, Kalarikkal N, Thomas S. Additive manufacturing of poly (ε-Caprolactone) for tissue engineering. JOM. 2020;72:4127-4138. doi:10.1007/s11837-020-04382-3.
Moroni L, Boland T, Burdick JA, et al. Biofabrication: a guide to technology and terminology. Trends Biotechnol. 2018;36:384-402.
Crump SS. Apparatus and method for creating three-dimensional objects. U.S. Patent 5,121,329, June 9. 1989.
Chen Q, Mangadlao JD, Wallat J, De Leon A, Pokorski JK, Advincula RC. 3D printing biocompatible polyurethane/poly(lactic acid)/Graphene oxide Nanocomposites: anisotropic properties. ACS Appl Mater Interfaces. 2017;9:4015-4023. doi:10.1021/acsami.6b11793.
Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res. 2001;55:203-216. doi:10.1002/1097-4636%28200105%2955%3A2%3C203%3A%3AAID-JBM1007%3E3.0.CO%3B2-7.
Wang F, Shor L, Darling A, et al. Precision extruding deposition and characterization of cellular poly- ε -caprolactone tissue scaffolds. Rapid Prototyp J. 2004;10:42-49. doi:10.1108/13552540410512525/full/html.
Riesle J. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials. 2004;25:4149-4161.
Shor L, Güçeri S, Chang R, et al. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering. Biofabrication. 2009;1:15003.
Shim JH, Lee JS, Kim JY, Cho DW. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J Micromech Microeng. 2012;22:85014.
Lee H, Ahn S, Bonassar LJ, Chun W, Kim G. Cell-laden poly(ɛ-caprolactone)/alginate hybrid scaffolds fabricated by an aerosol cross-linking process for obtaining homogeneous cell distribution: fabrication, seeding efficiency, and cell proliferation and distribution. Tissue Eng Part C Method. 2013;19:784-793. doi:10.1089/ten.tec.2012.0651.
Ahn S, Kim Y, Lee H, Kim G. A new hybrid scaffold constructed of solid freeform-fabricated PCL struts and collagen struts for bone tissue regeneration: fabrication, mechanical properties, and cellular activity. J Mater Chem. 2012;22:15901-15909.
Robinson TM, Hutmacher DW, Dalton PD. The next frontier in melt electrospinning: taming the jet. Adv Funct Mater. 2019;29:1904664.
Munteanu BS, Vasile C. Electrospun polymeric nanostructures with applications in Nanomedicine. Polymeric Nanomaterials in Nanotherapeutics. Elsevier. 2019;261-297. https://linkinghub.elsevier.com/retrieve/pii/B9780128139325000078.
Ahn SH, Lee HJ, Kim GH. Polycaprolactone scaffolds fabricated with an advanced electrohydrodynamic direct-printing method for bone tissue regeneration. Biomacromolecules. 2011;12:4256-4263.
Melchels FPW, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010;31:6121-6130. https://linkinghub.elsevier.com/retrieve/pii/S0142961210005661.
Green BJ, Worthington KS, Thompson JR, et al. Effect of molecular weight and functionality on Acrylated poly(caprolactone) for Stereolithography and biomedical applications. Biomacromolecules. 2018;19:3682-3692. doi:10.1021/acs.biomac.8b00784.
Kweon H. A novel degradable polycaprolactone networks for tissue engineering. Biomaterials. 2003;24:801-808. https://linkinghub.elsevier.com/retrieve/pii/S0142961202003708.
Kim H-M, Kim H-R, Hou CT, Kim BS. Biodegradable photo-Crosslinked thin polymer networks based on vegetable oil Hydroxy fatty acids. J Am Oil Chem Soc. 2010;87:1451-1459. doi:10.1007/s11746-010-1634-6.
Cai L, Wang S. Poly(ɛ-caprolactone) acrylates synthesized using a facile method for fabricating networks to achieve controllable physicochemical properties and tunable cell responses. Polymer. 2010;51:164-177. https://linkinghub.elsevier.com/retrieve/pii/S0032386109010362.
Atzet S, Curtin S, Trinh P, Bryant S, Ratner B. Degradable poly(2-hydroxyethyl methacrylate)- co -polycaprolactone hydrogels for tissue engineering scaffolds. Biomacromolecules. 2008;9:3370-3377. doi:10.1021/bm800686h.
Chung I, Xie D, Puckett AD, Mays JW. Syntheses and evaluation of biodegradable multifunctional polymer networks. Eur Polym J. 2003;39:1817-1822. https://linkinghub.elsevier.com/retrieve/pii/S0014305703000946.
Elomaa L, Teixeira S, Hakala R, Korhonen H, Grijpma DW, Seppälä JV. Preparation of poly(ε-caprolactone)-based tissue engineering scaffolds by stereolithography. Acta Biomater. 2011;7:3850-3856. https://linkinghub.elsevier.com/retrieve/pii/S1742706111002856.
Wang S, Lu L, Gruetzmacher J, Currier B, Yaszemski M. Synthesis and characterizations of biodegradable and crosslinkable poly(−caprolactone fumarate), poly(ethylene glycol fumarate), and their amphiphilic copolymer. Biomaterials. 2006;27:832-841. https://linkinghub.elsevier.com/retrieve/pii/S0142961205006046.
Turner BN, Gold SA. A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness. Rapid Prototyp J. 2015;21:250-261.
Bandyopadhyay A, Vahabzadeh S, Shivaram A, Bose S. Three-dimensional printing of biomaterials and soft materials. MRS Bull. 2015;40:1162-1169.
Wong KV, Hernandez A. A review of additive manufacturing. ISRN Mech Eng. 2012;2012:1-10.
Pham D, Gault R. A comparison of rapid prototyping technologies. Int J Mach Tool Manuf. 1998;38:1257-1287.
Gibson I, Rosen D, Stucker B. In: Stucker B, ed. Additive Manufacturing Technologies. 2nd ed. Springer; 2015. doi:10.1007/978-1-4939-2113-3.
Beatrice CAG, Shimomura KMB, Backes EH, et al. Engineering printable composites of poly (ε-polycaprolactone) / β-tricalcium phosphate for biomedical applications. Polym Compos. 2021;42:1198-1213. doi:10.1002/pc.25893.
Turner N, Strong R, Gold S. A review of melt extrusion additive manufacturing processes: I. process design and modeling. Rapid Prototyp J. 2014;20:192-204. doi:10.1108/RPJ-01-2013-0012.
Sanchez LC, Beatrice CAG, Lotti C, Marini J, Bettini SHP, Costa LC. Rheological approach for an additive manufacturing printer based on material extrusion. The Int J Adv Manuf Technol. 2019;105:2403-2414. doi:10.1007/s00170-019-04376-9.
Shaw MT. Introduction to Polymer Rheology. John Wiley & Sons; 2012.
Beatrice CAG, Branciforti MC, Alves RMV, Bretas RES. Rheological, mechanical, optical, and transport properties of blown films of polyamide 6/residual monomer/ montmorillonite nanocomposites. J Appl Polym Sci. 2010;116:3581-3592.
Bach A, Rasmussen HK, Hassager O. Extensional viscosity for polymer melts measured in the filament stretching rheometer. J Rheol. 2003;47:429-441.
Liu P, Dinwiddie RB, Keum JK, et al. Rheology, crystal structure, and nanomechanical properties in large-scale additive manufacturing of polyphenylene sulfide/carbon fiber composites. Compos Sci Technol. 2018;168:263-271. doi:10.1016/j.compscitech.2018.09.010.
McIlroy C, Olmsted PDD. Disentanglement effects on welding behaviour of polymer melts during the fused-filament-fabrication method for additive manufacturing. Polymer. 2017;123:376-391. doi:10.1016/j.polymer.2017.06.051.
Morrison FA. Understanding rheology. Oxford University Press; 2001.
Ortega Z, Alemán ME, Benítez AN, Monzón MD. Theoretical-experimental evaluation of different biomaterials for parts obtaining by fused deposition modeling. Measure J Intl Measure Confederation. 2016;89:137-144. doi:10.1016/j.measurement.2016.03.061.
Mobaraki M, Ghaffari M, Yazdanpanah A, Luo Y, Mills DK. Bioinks and bioprinting: a focused review. Bioprinting. 2020;18:e00080 https://linkinghub.elsevier.com/retrieve/pii/S2405886620300063.
Jungst T, Smolan W, Schacht K, Scheibel T, Groll J. Strategies and molecular design criteria for 3D printable hydrogels. Chem Rev. 2016;116:1496-1539. doi:10.1021/acs.chemrev.5b00303.
Zhong X, Ji C, Chan AKL, Kazarian SG, Ruys A, Dehghani F. Fabrication of chitosan/poly(ε-caprolactone) composite hydrogels for tissue engineering applications. J Mater Sci: Mater Med. 2011;22:279-288. doi:10.1007/s10856-010-4194-2.
Teixeira MO, Antunes JC, Felgueiras HP. Recent advances in fiber-hydrogel composites for wound healing and drug delivery systems. Antibiotics. 2021;10:248 https://www.mdpi.com/2079-6382/10/3/248.
Díaz-García Á, Law JY, Cota A, et al. Novel procedure for laboratory scale production of composite functional filaments for additive manufacturing. Mater Today Commun. 2020;24:101049.
Rauwendaal C. Understanding Extrusion. 2nd ed. Hanser Publications; 2010:250.
Paci M, Filippi S, Magagnini P. Nanostructure development in nylon 6-Cloisite® 30B composites. Effects of the preparation conditions. Eur Polym J. 2010;46:838-853.
Dennis HR, Hunter DL, Chang D, et al. Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites. Polymer. 2001;42:9513-9522. https://linkinghub.elsevier.com/retrieve/pii/S0032386101004736.
Di Maio E, Iannace S, Sorrentino L, Nicolais L. Isothermal crystallization in PCL/clay nanocomposites investigated with thermal and rheometric methods. Polymer. 2004;45:8893-8900.
Costa SF, Duarte FM, Covas JA. Thermal conditions affecting heat transfer in FDM/FFE: a contribution towards the numerical modelling of the process. Virtua Phys Prototyp. 2015;10:35-46. doi:10.1080/17452759.2014.984042.
Costa SFF, Duarte FMM, Covas JAA. Estimation of filament temperature and adhesion development in fused deposition techniques. J Mater Process Technol. 2017;245:167-179. doi:10.1016/j.jmatprotec.2017.02.026.
Mochizuki M, Hirano M, Kanmuri Y, Kudo K, Tokiwa Y. Hydrolysis of polycaprolactone fibers by lipase: effects of draw ratio on enzymatic degradation. J Appl Polym Sci. 1995;55:289-296. doi:10.1002/app.1995.070550212.
Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM. Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Degrad Stab. 2010;95:2126-2146. doi:10.1016/j.polymdegradstab.2010.06.007.
Maguire TJ, Yarmush ML, Berthiaume F, Maguire TJ, Yarmush ML. Tissue engineering and regenerative medicine: history, Progress, and challenges. Ann Rev Chem Biomol Eng. 2011;2:403-430.
Isikli C, Hasirci V, Hasirci N. Co-culture in cartilage tissue engineering. J Tissue Eng Regen Med. 2012;6:135-143.
Neumann R, Neunzehn J, Hinueber C, Flath T, Schulze FP, Wiesmann H. 3D-printed poly-ε-caprolactone-CaCO3-biocomposite-scaffolds for hard tissue regeneration. Express Polym Lett. 2019;13:2-17.
Lam CXF, Savalani MM, Teoh S-H, Hutmacher DW. Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological conditions. Biomed Mater. 2008;3:34108. doi:10.1088/1748-6041/3/3/034108.
Hassanajili S, Karami-Pour A, Oryan A, Talaei-Khozani T. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Mater Sci Eng, C. 2019;104:109960. doi:10.1016/j.msec.2019.109960.
Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:3413-3431.
Ural E, Kesenci K, Fambri L, Migliaresi C, Piskin E. Poly(d,l-cactide/ε-caprolactone)/hydroxyapatite composites. Biomaterials. 2000;21:2147-2154. https://linkinghub.elsevier.com/retrieve/pii/S0142961200000983.
Zhang KL, Fu Q, Yoo J, et al. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment. Acta Biomater. 2017;50:154-164. doi:10.1016/j.actbio.2016.12.008.
Poh PS, Hege C, Chhaya MP, et al. Evaluation of polycaprolactone − poly-D,L-lactide copolymer as biomaterial for breast tissue engineering. Intergovernmental panel on climate change editor. Polym Int. 2017;66:77-84. https://www.cambridge.org/core/product/identifier/CBO9781107415324A009/type/book_part.
Moncal KK, Heo DN, Godzik KP, et al. 3D printing of poly(ϵ-caprolactone)/poly(D,L-lactide-co-glycolide)/hydroxyapatite composite constructs for bone tissue engineering. J Mater Res. 2018;33:1972-1986.
Ferreira J, Gloria A, Cometa S, Coelho JFJJ, Domingos M. Effect of in vitro enzymatic degradation on 3D printed poly(epsilon-caprolactone) scaffolds: morphological, chemical and mechanical properties. J Appl Biomater Function Mater. 2017;15:E185-E195. http://www.jab-fm.com/article/26c371b2-a1bf-4d49-a139-1e2ebb969fc2.
Seyednejad H, Gawlitta D, Kuiper RV, et al. In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(epsilon-caprolactone). Biomaterials. 2012;33:4309-4318.
Touri M, Moztarzadeh F, Osman NAA, Dehghan MM, Mozafari M. Optimisation and biological activities of bioceramic robocast scaffolds provided with an oxygen-releasing coating for bone tissue engineering applications. Ceram Int. 2019;45:805-816. doi:10.1016/j.ceramint.2018.09.247.
Caetano G, Violante R, Sant Ana AB, et al. Cellularized versus decellularized scaffolds for bone regeneration. Mater Lett. 2016;182:318-322. doi:10.1016/j.matlet.2016.05.152.
Williams DF. There is no such thing as a biocompatible material. Biomaterials. 2014;35:10009-10014. https://linkinghub.elsevier.com/retrieve/pii/S0142961214009600.
Huang B, Vyas C, Byun JJ, El-Newehy M, Huang Z, Bártolo P. Aligned multi-walled carbon nanotubes with nanohydroxyapatite in a 3D printed polycaprolactone scaffold stimulates osteogenic differentiation. Mater Sci Eng, C. 2020;108:110374 https://linkinghub.elsevier.com/retrieve/pii/S0928493119326712.
Pierantozzi D, Scalzone A, Jindal S, et al. 3D printed Sr-containing composite scaffolds: effect of structural design and material formulation towards new strategies for bone tissue engineering. Compos Sci Technol. 2020;191:108069 https://linkinghub.elsevier.com/retrieve/pii/S0266353819329082.
Silva JC, Carvalho MS, Udangawa RN, et al. Extracellular matrix decorated polycaprolactone scaffolds for improved mesenchymal stem/stromal cell osteogenesis towards a patient-tailored bone tissue engineering approach. J Biomed Mater Res, Part B. 2020;108:2153-2166. doi:10.1002/jbm.b.34554.
Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Mater Today. 2013;16:496-504. doi:10.1016/j.mattod.2013.11.017.
Baptista R, Guedes M. Morphological and mechanical characterization of 3D printed PLA scaffolds with controlled porosity for trabecular bone tissue replacement. Mater Sci Eng, C. 2021;118:111528 https://linkinghub.elsevier.com/retrieve/pii/S0928493120334469.
Jeong H-J, Gwak S-J, Seo KD, et al. Fabrication of three-dimensional composite scaffold for simultaneous alveolar bone regeneration in dental implant installation. Int J Mol Sci. 2020;21:1863 https://www.mdpi.com/1422-0067/21/5/1863.
Gonçalves EM, Oliveira FJ, Silva RF, et al. Three-dimensional printed PCL-hydroxyapatite scaffolds filled with CNTs for bone cell growth stimulation. J Biomed Mater Res Part B Appl Biomater. 2016;104:1210-1219.
Wang H, Domingos MA, Das Scenini NF. Advanced mechanical and thermal characterization of 3D bioextruded poly(ε-caprolactone)-based composites. Campbell RI, Campbell RI editors. Rapid Prototyp J. 2018;24:738. doi:10.1108/RPJ-10-2016-0165.
Jin G, Kim GH. Rapid-prototyped PCL/fucoidan composite scaffolds for bone tissue regeneration: design, fabrication, and physical/biological properties. J Mater Chem. 2011;21:17710 http://xlink.rsc.org/?DOI=c1jm12915e.
Di Luca A, Longoni A, Criscenti G, et al. Surface energy and stiffness discrete gradients in additive manufactured scaffolds for osteochondral regeneration. Biofabrication. 2016;8:015014. http://dx.doi.org/10.1088/1758-5090/8/1/015014.
Dávila JL, Freitas MS, Inforçatti Neto P, Silveira ZC, Silva JVLL, D’Ávila MA. Fabrication of PCL/β-TCP scaffolds by 3D mini-screw extrusion printing. J Appl Polym Sci. 2016;133:1-9.
Chen M, Le DQS, Baatrup A, et al. Self-assembled composite matrix in a hierarchical 3-D scaffold for bone tissue engineering. Acta Biomater. 2011;7:2244-2255. http://linkinghub.elsevier.com/retrieve/pii/S1742706110005957.
Rashad A, Mohamed-Ahmed S, Ojansivu M, et al. Coating 3D printed Polycaprolactone scaffolds with Nanocellulose promotes growth and differentiation of Mesenchymal stem cells. Biomacromolecules. 2018;19:4307-4319.
Kosorn W, Wutticharoenmongkol P. Poly(ε-caprolactone)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blend from fused deposition modeling as potential cartilage scaffolds. Fern Ndez Garc a M Ed Int J Poly Sci. 2021;2021:1-18. https://www.hindawi.com/journals/ijps/2021/6689789/.
Vozzi G, Previti A, De Rossi D, Ahluwalia A. Microsyringe-based deposition of two-dimensional and three-dimensional polymer scaffolds with a well-defined geometry for application to tissue engineering. Tissue Eng. 2002;8:1089-1098. doi:10.1089/107632702320934182.
Zhang J, Wang XZ, Yu WW, Deng YH. Numerical investigation of the influence of process conditions on the temperature variation in fused deposition modeling. Materials and design. Elsevier. 2017;130:59-68. doi:10.1016/j.matdes.2017.05.040.
Lee SJ, Kim ME, Nah H, et al. Vascular endothelial growth factor immobilized on mussel-inspired three-dimensional bilayered scaffold for artificial vascular graft application: in vitro and in vivo evaluations. J Colloid Interface Sci. 2019;537:333-344. doi:10.1016/j.jcis.2018.11.039.
Albrecht LD, Sawyer SW, Soman P. Developing 3D scaffolds in the field of tissue engineering to treat complex bone defects. 3d Print Addit Manuf. 2016;3:106-112.
Joseph B, Ninan N, Visalakshan RM, et al. Insights into the biomechanical properties of plasma treated 3D printed PCL scaffolds decorated with gold nanoparticles. Compos Sci Technol. 2021;202:108544 https://linkinghub.elsevier.com/retrieve/pii/S0266353820323368.
Lee SJ, Lee D, Yoon TR, et al. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering. Acta Biomater. 2016;40:182-191. doi:10.1016/j.actbio.2016.02.006.
Williams D. Biocompatibility pathways. Essential Biomaterials Science. Cambridge Texts in Biomedical Engineering, 2014;17(1):236-312). https://www.cambridge.org/core/product/identifier/9781139026086/type/book.
Guimarães CF, Gasperini L, Marques AP, Reis RL. The stiffness of living tissues and its implications for tissue engineering. Nat Rev Mater. 2020 5:351-370.
Ratner BD. The biocompatibility of implant materials. Host response to biomaterials. Host Response to Biomaterials. 2015;37-51. Academic Press. https://linkinghub.elsevier.com/retrieve/pii/B9780128001967000037.
Yang GH, Kim M, Kim G. Additive-manufactured polycaprolactone scaffold consisting of innovatively designed microsized spiral struts for hard tissue regeneration. Biofabrication. 2016;9:15005. doi:10.1088/1758-5090/9/1/015005.
Merceron TK, Burt M, Seol YJ, et al. A 3D bioprinted complex structure for engineering the muscle-tendon unit. Biofabrication. 2015;7:35003. doi:10.1088/1758-5090/7/3/035003.
Yang GH, Lee H, Kim GH. Preparation and characterization of spiral-like micro-struts with nano-roughened surface for enhancing the proliferation and differentiation of preosteoblasts. J Ind Eng Chem. 2018;61:244-254. doi:10.1016/j.jiec.2017.12.022.
Lee J, Walker J, Natarajan S, Yi S. Prediction of geometric characteristics in polycaprolactone (PCL) scaffolds produced by extrusion-based additive manufacturing technique for tissue engineering. Rapid Prototyp J. 2019;26:238-248. doi:10.1108/RPJ-08-2018-0219/full/html.
Kapfer SC, Hyde ST, Mecke K, Arns CH, Schröder-Turk GE. Minimal surface scaffold designs for tissue engineering. Biomaterials. 2011;32:6875-6882. https://linkinghub.elsevier.com/retrieve/pii/S0142961211006776.
Fonseca DR, Sobreiro-Almeida R, Sol PC, Neves NM. Development of non-orthogonal 3D-printed scaffolds to enhance their osteogenic performance. Biomater Sci Royal Soc Chem. 2018;6:1569-1579. http://xlink.rsc.org/?DOI=C8BM00073E.
Hendrikson WJ, Rouwkema J, Van Blitterswijk CA, Moroni L. Influence of PCL molecular weight on mesenchymal stromal cell differentiation. RSC Adv. 2015;5:54510-54516.
Meng Z, He J, Cai Z, et al. Design and additive manufacturing of flexible polycaprolactone scaffolds with highly-tunable mechanical properties for soft tissue engineering. Mater Des. 2020;189:108508 https://linkinghub.elsevier.com/retrieve/pii/S0264127520300411.
Bruyas A, Lou F, Stahl AM, et al. Systematic characterization of 3D-printed PCL/β-TCP scaffolds for biomedical devices and bone tissue engineering: influence of composition and porosity. J Mater Res. 2018;33:1948-1959. https://www.cambridge.org/core/product/identifier/S0884291418001127/type/journal_article.
Ribeiro JFMM, Oliveira SM, Alves JL, et al. Structural monitoring and modeling of the mechanical deformation of three-dimensional printed poly(epsilon-caprolactone) scaffolds. Biofabrication. 2017;9:025015.
Tofail SAM, Koumoulos EP, Bandyopadhyay A, Bose S, O'Donoghue L, Charitidis C. Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater Today. 2018;21:22-37. doi:10.1016/j.mattod.2017.07.001.
Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773-785.
Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf, B. 2010;75:1-18.
Lee H, Cho D-W. One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology. Lab chip. Royal Society of. Chemistry. 2016;16:2618-2625.
Gámez E, Mendoza G, Salido S, Arruebo M, Irusta S. Antimicrobial electrospun polycaprolactone-based wound dressings: An in vitro study about the importance of the direct contact to elicit bactericidal activity. Adv Wound Care Mary Ann Liebert Inc. 2019;8:438-451.
Arora A, Aggarwal G, Chander J, Maman P, Nagpal M. Drug eluting sutures: a recent update. J Appl Pharml Sci. 2019;9:111-123.
Hewitt E, Mros S, McConnell M, Cabral JD, Ali A. Melt-electrowriting with novel milk protein/PCL biomaterials for skin regeneration. Biomed Mater (Bristol). 2019;14:055013.
Hsieh Y, Shen B, Wang Y, Lin B, Lee H, Hsieh M-F. Healing of Osteochondral defects implanted with biomimetic scaffolds of poly(ε-Caprolactone)/hydroxyapatite and Glycidyl-methacrylate-modified hyaluronic acid in a Minipig. Int J Mol Sci. 2018;19:1125. http://www.mdpi.com/1422-0067/19/4/1125.
Miao S, Nowicki M, Cui H, et al. 4D anisotropic skeletal muscle tissue constructs fabricated by staircase effect strategy. Biofabrication. 2019;11:35030. doi:10.1088/1758-5090/ab1d07.
Leong NL, Kabir N, Arshi A, et al. Evaluation of polycaprolactone scaffold with basic fibroblast growth factor and fibroblasts in an athymic rat model for anterior cruciate ligament reconstruction. Tissue Eng Part A Mary Ann Liebert Inc. 2015;21:1859-1868.
Yang G, Lin H, Rothrauff BB, Yu S, Tuan RS. Multilayered polycaprolactone/gelatin fiber-hydrogel composite for tendon tissue engineering. Acta Biomater Elsevier Ltd. 2016;35:68-76.
Mohamadi F, Ebrahimi-Barough S, Reza Nourani M, et al. Electrospun nerve guide scaffold of poly(ε-caprolactone)/collagen/nanobioglass: an in vitro study in peripheral nerve tissue engineering. J Biomed Mater res A. 2017;105:1960-1972.
Lei Q, He J, Li D. Electrohydrodynamic 3D printing of layer-specifically oriented, multiscale conductive scaffolds for cardiac tissue engineering. Nanoscale Royal Soc Chem. 2019;11:15195-15205.
Chhaya MP, Balmayor ER, Hutmacher DW, Schantz JT. Transformation of breast reconstruction via additive biomanufacturing. Sci Report Nat Pub Group. 2016;6:1-12.
Serrano-Aroca Á, Vera-Donoso CD, Moreno-Manzano V. Bioengineering approaches for bladder regeneration. Int J Mol Sci MDPI AG. 2018;19:1796.
Kong B, Mi S. Electrospun scaffolds for corneal tissue engineering: A review. Materials. 2016;614.
Grant R, Hay DC, Callanan A. A drug-induced hybrid electrospun poly-capro-lactone: cell-rerived extracellular matrix scaffold for liver tissue engineering. Tissue Eng Part A. 2017;23:650-662.
Vaz CM, van Tuijl S, Bouten CVC, Baaijens FPT. Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. Acta Biomater Elsevier. 2005;1:575-582.
Burton TP, Corcoran A, Callanan A. The effect of electrospun polycaprolactone scaffold morphology on human kidney epithelial cells. Biomed Mater IOP Pub. 2018;13:15006.
Ghorbani F, Moradi L, Shadmehr MB, Bonakdar S, Droodinia A, Safshekan F. In-vivo characterization of a 3D hybrid scaffold based on PCL/decellularized aorta for tracheal tissue engineering. Mat Sci Eng C Elsevier Ltd. 2017;81:74-83.
Smink AM, Hertsig DT, Schwab L, et al. A retrievable, efficacious polymeric scaffold for subcutaneous transplantation of rat pancreatic islets. Ann Surg Lippincott Williams Wilkins. 2017;266:149-157.
Jiao Z, Luo B, Xiang S, Ma H, Yu Y, Yang W. 3D printing of HA / PCL composite tissue engineering scaffolds. Adv Indus Eng Polym Res. 2019;2:196-202. doi:10.1016/j.aiepr.2019.09.003.
Siqueira IAWB, Amaral SS, de Moura NK, et al. In vitro bioactivity and biological assays of porous membranes of the poly(lactic acid) containing calcium silicate fibers. Polym Bull. 2019;77:5357-5371. doi:10.1007/s00289-019-03021-5.
Siqueira LD, Passador FR, Lobo AO, Trichês ES. Morphological, thermal and bioactivity evaluation of electrospun PCL/β-TCP fibers for tissue regeneration. Polímeros. 2019;29:1-6.
Wang K, Chen X, Pan Y, et al. Enhanced vascularization in hybrid PCL/gelatin fibrous scaffolds with sustained release of VEGF. Biomed res Int. 2015;2015:1-10.
Al KIMET. In vitro and in vivo studies of BMP-2-loaded PCL-gelatin-BCP electrospun scaffolds. Tissue Eng Part A. 2014;20:3279-3289.
Danesin R, Brun P, Roso M, et al. Self-assembling peptide-enriched electrospun polycaprolactone scaffolds promote the h -osteoblast adhesion and modulate differentiation-associated gene expression. Bone Elsevier Inc. 2012;51:851-859.
Suryavanshi A, Khanna K, Sindhu KR, Bellare J, Srivastava R. Magnesium oxide nanoparticle-loaded polycaprolactone composite electrospun fiber scaffolds for bone-soft tissue engineering applications: in-vitro and in-vivo evaluation. Biomed Mater IOP Pub. 2017;12:55011. doi:10.1088/1748-605X/aa792b.
Felice B, Sánchez MA, Socci MC, et al. Controlled degradability of PCL-ZnO nanofibrous scaffolds for bone tissue engineering and their antibacterial activity. Mater Sci Eng, C. 2018;93:724-738. doi:10.1016/j.msec.2018.08.009.
Rabionet M, Polonio E, Guerra AJ, Martin J, Puig T, Ciurana J. Design of a scaffold parameter selection system with additive manufacturing for a biomedical cell culture. Materials. 2018;11:1-14.
Lee K, Jin G, Jang CH, Jung W-K, Kim G. Preparation and characterization of multi-layered poly(ε-caprolactone)/chitosan scaffolds fabricated with a combination of melt-plotting/in situ plasma treatment and a coating method for hard tissue regeneration. J Mater Chem B. 2013;1:5831. http://xlink.rsc.org/?DOI=c3tb21123a-5841.
Criscenti G, Longoni A, Di Luca A, et al. Triphasic scaffolds for the regeneration of the bone-ligament interface. Biofabrication. 2016;8:15009. doi:10.1088/1758-5090/8/1/015009.
Kosorn W, Sakulsumbat M, Uppanan P, et al. PCL/PHBV blended three dimensional scaffolds fabricated by fused deposition modeling and responses of chondrocytes to the scaffolds. J Biomed Mater Res Part B Appl Biomater. 2017;105:1141-1150.
Liu D, Nie W, Li D, et al. 3D printed PCL/SrHA scaffold for enhanced bone regeneration. Chem Eng J. 2019;362:269-279. doi:10.1016/j.cej.2019.01.015.
Hung BP, Naved BA, Nyberg EL, et al. Three-dimensional printing of bone extracellular matrix for craniofacial regeneration. ACS Biomater Sci Eng. 2016;2:1806-1816.
Bartnikowski M, Moon HJ, Ivanovski S. Release of lithium from 3D printed polycaprolactone scaffolds regulates macrophage and osteoclast response. Biomed Mater. 2018;13:065003.
Lu L, Zhang Q, Wootton D, et al. Biocompatibility and biodegradation studies of PCL/β-TCP bone tissue scaffold fabricated by structural porogen method. J Mater Sci: Mater Med. 2012;23:2217-2226. doi:10.1007/s10856-012-4695-2.
Yeo M, Lee H, Kim G. Three-dimensional hierarchical composite scaffolds consisting of Polycaprolactone, β-Tricalcium phosphate, and collagen Nanofibers: fabrication, physical properties, and in vitro cell activity for bone tissue regeneration. Biomacromolecules. 2011;12:502-510. doi:10.1021/bm1013052.
Xu N, Ye X, Wei D, et al. 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair. ACS Appl Mater Interfaces. 2014;6:14952-14963. doi:10.1021/am502716t.
Ntege EH, Sunami H, Shimizu Y. Advances in regenerative therapy: a review of the literature and future directions. Regen Therapy. 2020;14:136-153. https://linkinghub.elsevier.com/retrieve/pii/S2352320420300043.
Mahony O, Tsigkou O, Ionescu C, et al. Silica-gelatin hybrids with Tailorable degradation and mechanical properties for tissue regeneration. Adv Funct Mater. 2010;20:3835-3845. doi:10.1002/adfm.201000838.
Zhang Y, Wu D, Zhao X, et al. Stem cell-friendly scaffold biomaterials: applications for bone tissue engineering and regenerative medicine. Front Bioeng Biotechnol. 2020;8:1-18. doi:10.3389/fbioe.2020.598607/full.
Abou-Saleh H, Zouein FA, El-Yazbi A, et al. The march of pluripotent stem cells in cardiovascular regenerative medicine. Stem Cell Res Ther. 2018;9:201. doi:10.1186/s13287-018-0947-5.
Mohammadian F. Recent Advances in Stem Cell and Tissue Engineering. Tissue Regeneration. 2018;1:1-10. InTech.
Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 2003;21:157-161.
Maguire TJ, Yarmush ML. Tissue engineering and regenerative medicine: History, progress, and challenges. Annu Rev Chem Biomol Eng. 2011;2:403-430.
Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006;367:1241-1246.
Ramos L. Critical overview of selected contemporary sample preparation techniques. J Chromatogr A. 2012;1221:84-98.
Du Y, Liu H, Yang Q, et al. Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits. Biomater Elsevier Ltd. 2017;137:37-48.
Afghah F, Ullah M, Seyyed Monfared Zanjani J, et al. 3D printing of silver-doped polycaprolactone-poly(propylene succinate) composite scaffolds for skin tissue engineering. Biomed Mater. 2020;15:35015.
Qasim M, Haq F, Kang MH, Kim JH. 3D printing approaches for cardiac tissue engineering and role of immune modulation in tissue regeneration. Int J Nanomed. 2019;14:1311-1333.
Chen J-M, Lee D, Yang J-W, Lin S-H, Lin Y-T, Liu S-J. Solution extrusion additive manufacturing of biodegradable Polycaprolactone. Appl Sci. 2020;10:3189 https://www.mdpi.com/2076-3417/10/9/3189.
Romanazzo S, Nemec S, Roohani I. iPSC bioprinting: where are we at? Materials. 2019;12:1-18.
Aljohani W, Ullah MW, Zhang X, Yang G. Bioprinting and its applications in tissue engineering and regenerative medicine. Int J Biol Macromol. 2018;107:261-275. doi:10.1016/j.ijbiomac.2017.08.171.
Ren J, Wang Y, Yao Y, et al. Biological material interfaces as inspiration for mechanical and optical material designs. Chem Rev. 2019;119:12279-12336. doi:10.1021/acs.chemrev.9b00416.
Chen Y-W, Shen Y-F, Ho C-C, et al. Osteogenic and angiogenic potentials of the cell-laden hydrogel/mussel-inspired calcium silicate complex hierarchical porous scaffold fabricated by 3D bioprinting. Mater Sci Eng C. 2018;91:679-687. doi:10.1016/j.msec.2018.06.005.
Kim M, Kim W, Kim G. Topologically micropatterned collagen and poly(ϵ-caprolactone) struts fabricated using the poly(vinyl alcohol) fibrillation/leaching process to develop efficiently engineered skeletal muscle tissue. ACS Appl Mater Interfaces. 2017;9:43459-43469.
Ye K, Kaplan DL, Bao G, et al. Advanced cell and tissue biomanufacturing. ACS Biomater Sci Eng. 2018;4:2292-2307. doi:10.1021/acsbiomaterials.8b00650.
González-Henríquez CM, Sarabia-Vallejos MA, Rodriguez-Hernandez J. Polymers for additive manufacturing and 4D-printing: Materials, methodologies, and biomedical applications. 2019;94:57-116. doi:10.1016/j.progpolymsci.2019.03.001.
An J, Teoh JEM, Suntornnond R, Chua CK. Design and 3D printing of scaffolds and tissues. Therm Eng. 2015;1:261-268. http://linkinghub.elsevier.com/retrieve/pii/S2095809916300716.
معلومات مُعتمدة: Finance Code 001 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; PNPD20131474-33001014004P9 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; 2017/09609-9 Fundação de Amparo à Pesquisa do Estado de São Paulo; 2017/11366-7 Fundação de Amparo à Pesquisa do Estado de São Paulo; 2018/14151-4 Fundação de Amparo à Pesquisa do Estado de São Paulo; 2018/26060-3 Fundação de Amparo à Pesquisa do Estado de São Paulo
فهرسة مساهمة: Keywords: additive manufacturing; biomaterial; polycaprolactone; scaffold; tissue engineering
المشرفين على المادة: 0 (Polyesters)
24980-41-4 (polycaprolactone)
تواريخ الأحداث: Date Created: 20211217 Date Completed: 20220412 Latest Revision: 20220707
رمز التحديث: 20240628
DOI: 10.1002/jbm.b.34997
PMID: 34918463
قاعدة البيانات: MEDLINE
الوصف
تدمد:1552-4981
DOI:10.1002/jbm.b.34997