دورية أكاديمية

Poly I:C and STING agonist-primed DC increase lymphoid tissue polyfunctional HIV-1-specific CD8 + T cells and limit CD4 + T-cell loss in BLT mice.

التفاصيل البيبلوغرافية
العنوان: Poly I:C and STING agonist-primed DC increase lymphoid tissue polyfunctional HIV-1-specific CD8 + T cells and limit CD4 + T-cell loss in BLT mice.
المؤلفون: Calvet-Mirabent M; Immunology Unit, Instituto de Investigación Sanitaria Princesa, Hospital Universitario de la Princesa, Madrid, Spain.; Medicine Department, Universidad Autónoma of Madrid, Madrid, Spain., Claiborne DT; Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA., Deruaz M; Human Immune System Mouse Program, Massachusetts General Hospital, Boston, Massachusetts, USA.; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA., Tanno S; Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA.; Human Immune System Mouse Program, Massachusetts General Hospital, Boston, Massachusetts, USA., Serra C; Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Catalonia, Spain., Delgado-Arévalo C; Immunology Unit, Instituto de Investigación Sanitaria Princesa, Hospital Universitario de la Princesa, Madrid, Spain.; Medicine Department, Universidad Autónoma of Madrid, Madrid, Spain., Sánchez-Cerrillo I; Immunology Unit, Instituto de Investigación Sanitaria Princesa, Hospital Universitario de la Princesa, Madrid, Spain., de Los Santos I; Infectious Diseases Unit, Instituto de Investigación Sanitaria Princesa, Hospital Universitario de la Princesa, Madrid, Spain., Sanz J; Infectious Diseases Unit, Instituto de Investigación Sanitaria Princesa, Hospital Universitario de la Princesa, Madrid, Spain., García-Fraile L; Infectious Diseases Unit, Instituto de Investigación Sanitaria Princesa, Hospital Universitario de la Princesa, Madrid, Spain., Sánchez-Madrid F; Immunology Unit, Instituto de Investigación Sanitaria Princesa, Hospital Universitario de la Princesa, Madrid, Spain.; Medicine Department, Universidad Autónoma of Madrid, Madrid, Spain., Alfranca A; Immunology Unit, Instituto de Investigación Sanitaria Princesa, Hospital Universitario de la Princesa, Madrid, Spain., Muñoz-Fernández MÁ; Immunology Section, Instituto Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, Spain., Allen TM; Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA., Buzón MJ; Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Catalonia, Spain., Balazs A; Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA.; Human Immune System Mouse Program, Massachusetts General Hospital, Boston, Massachusetts, USA., Vrbanac V; Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA.; Human Immune System Mouse Program, Massachusetts General Hospital, Boston, Massachusetts, USA., Martín-Gayo E; Immunology Unit, Instituto de Investigación Sanitaria Princesa, Hospital Universitario de la Princesa, Madrid, Spain.; Medicine Department, Universidad Autónoma of Madrid, Madrid, Spain.
المصدر: European journal of immunology [Eur J Immunol] 2022 Mar; Vol. 52 (3), pp. 447-461. Date of Electronic Publication: 2022 Jan 08.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 1273201 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-4141 (Electronic) Linking ISSN: 00142980 NLM ISO Abbreviation: Eur J Immunol Subsets: MEDLINE
أسماء مطبوعة: Publication: <2005->: Weinheim : Wiley-VCH
Original Publication: Weinheim, Verlag Chemie GmbH.
مواضيع طبية MeSH: AIDS Vaccines*/metabolism , HIV-1*, Adjuvants, Immunologic/pharmacology ; Animals ; CD4-Positive T-Lymphocytes ; CD8-Positive T-Lymphocytes ; Dendritic Cells ; HIV Core Protein p24/metabolism ; Lymphoid Tissue ; Mice ; Poly I-C/pharmacology
مستخلص: Effective function of CD8 + T cells and enhanced innate activation of DCs in response to HIV-1 is linked to protective antiviral immunity in controllers. Manipulation of DC targeting the master regulator TANK-binding Kinase 1 (TBK1) might be useful to acquire controller-like properties. Here, we evaluated the impact of the combination of 2´3´-c´diAM(PS)2 and Poly I:C as potential adjuvants capable of potentiating DC´s abilities to induce polyfunctional HIV-1 specific CD8 + T-cell responses in vitro and in vivo using a humanized BLT mouse model. Adjuvant combination enhanced TBK-1 phosphorylation and IL-12 and IFN-β expression on DC and increased their ability to activate polyfunctional HIV-1-specific CD8 + T cells in vitro. Moreover, higher proportions of hBLT mice vaccinated with ADJ-DC exhibited less severe CD4 + T-cell depletion following HIV-1 infection compared to control groups. This was associated with infiltration of CD8 + T cells in the white pulp from the spleen, reduced spread of infected p24 + cells to LN, and with preserved abilities of CD8 + T cells from the spleen and blood of vaccinated animals to induce specific polyfunctional responses upon antigen stimulation. Therefore, priming of DC with PolyI:C and STING agonists might be useful for future HIV-1 vaccine studies.
(© 2022 The Authors. European Journal of Immunology published by Wiley-VCH GmbH.)
References: O'Connell, R. J., Kim, J. H., Corey, L. and Michael, N. L., Human immunodeficiency virus vaccine trials. Cold Spring Harb. Perspect. Med. 2012. 2: a007351.
Gray, G. E., Laher, F., Lazarus, E., Ensoli, B. and Corey, L., Approaches to preventative and therapeutic HIV vaccines. Curr. Opin. Virol. 2016. 17: 104-109.
O'Keeffe, M., Mok, W. H. and Radford, K. J., Human dendritic cell subsets and function in health and disease. Cellular and molecular life sciences: CMLS. 2015.
Martin-Gayo, E., Gao, C., Chen, H. R., Ouyang, Z., Kim, D., Kolb, K. E. et al., Immunological fingerprints of controllers developing neutralizing HIV-1 antibodies. Cell Rep. 2020. 30: 984-996.e4.
Bol, K. F., Schreibelt, G., Gerritsen, W. R. and de Vries, I. J., Figdor, C. G., Dendritic cell-based immunotherapy: state of the art and beyond. Clin. Cancer Res. 2016. 22: 1897-1906.
Ide, F., Nakamura, T., Tomizawa, M., Kawana-Tachikawa, A., Odawara, T., Hosoya, N. et al., Peptide-loaded dendritic-cell vaccination followed by treatment interruption for chronic HIV-1 infection: a phase 1 trial. J. Med.Virol. 2006. 78: 711-718.
Kundu, S. K., Engleman, E., Benike, C., Shapero, M. H., Dupuis, M., van Schooten, W. C. et al., A pilot clinical trial of HIV antigen-pulsed allogeneic and autologous dendritic cell therapy in HIV-infected patients. AIDS Res. Hum. Retroviruses 1998. 14: 551-560.
Gandhi, R. T., O'Neill, D., Bosch, R. J., Chan, E. S., Bucy, R. P., Shopis, J. et al., A randomized therapeutic vaccine trial of canarypox-HIV-pulsed dendritic cells vs. canarypox-HIV alone in HIV-1-infected patients on antiretroviral therapy. Vaccine 2009. 27: 6088-6094.
García, F., Climent, N., Guardo, A. C., Gil, C., León, A., Autran, B., Lifson, J. D., Martínez-Picado, J., Dalmau, J., Clotet, B., Gatell, J. M., Plana, M. and Gallart, T., A dendritic cell-based vaccine elicits T Cell responses associated with control of HIV-1 replication. Science Translational Medicine. 2013. 5. http://doi.org/10.1126/scitranslmed.3004682.
Coelho, A. V., de Moura, R. R., Kamada, A. J., da Silva, R. C., Guimaraes, R. L., Brandao, L. A. et al., Dendritic cell-based immunotherapies to fight HIV: how far from a success story? a systematic review and meta-analysis. Int. J. Mol. Sci. 2016. 17: 1985.
Martin-Gayo, E., Buzon, M. J., Ouyang, Z., Hickman, T., Cronin, J., Pimenova, D. et al., Potent cell-intrinsic immune responses in dendritic cells facilitate HIV-1-specific t cell immunity in HIV-1 elite controllers. PLoS Pathog. 2015. 11: e1004930.
Gao, D., Wu, J., Wu, Y. T., Du, F., Aroh, C., Yan, N. et al., Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 2013, 341: 903-906.
Habjan, M. and Pichlmair, A., Cytoplasmic sensing of viral nucleic acids. Curr. Opin. Virol. 2015, 11: 31-37.
Ma, Z. and Damania, B., The cGAS-STING defense pathway and its counteraction by viruses. Cell Host & Microbe 2016. 19: 150-158.
Almeida, J. R., Price, D. A., Papagno, L., Arkoub, Z. A., Sauce, D., Bornstein, E. et al., Superior control of HIV-1 replication by CD8+ T cells is reflected by their avidity, polyfunctionality, and clonal turnover. J. Exp. Med. 2007. 204: 2473-2485.
Betts, M. R. and Harari, A., Phenotype and function of protective T cell immune responses in HIV. Curr Opin HIV AIDS 2008. 3: 349-355.
Zhao, C. and Zhao, W., TANK-binding kinase 1 as a novel therapeutic target for viral diseases. Expert Opin. Ther. Targets 2019. 23: 437-446.
Huang, X. L., Fan, Z., Borowski, L. and Rinaldo, C. R., Maturation of dendritic cells for enhanced activation of anti-HIV-1 CD8(+) T cell immunity. J. Leukoc. Biol. 2008. 83: 1530-1540.
Nguyen, S., Deleage, C., Darko, S., Ransier, A., Truong, D. P., Agarwal, D. et al., Elite control of HIV is associated with distinct functional and transcriptional signatures in lymphoid tissue CD8(+) T cells. Sci. Transl. Med. 2019. 11: eaax4077.
Fukazawa, Y., Lum, R., Okoye, A. A., Park, H., Matsuda, K., Bae, J. Y. et al., B cell follicle sanctuary permits persistent productive simian immunodeficiency virus infection in elite controllers. Nat. Med. 2015. 21: 132-139.
Sui, Y., Gordon, S., Franchini, G. and Berzofsky, J. A., Nonhuman primate models for HIV/AIDS vaccine development. Curr. Protoc. Immunol. 2013. 102: 1-30.
Lan, P., Tonomura, N., Shimizu, A., Wang, S. and Yang, Y. G., Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood 2006. 108: 487-492.
Marsden, M. D., Kovochich, M., Suree, N., Shimizu, S., Mehta, R., Cortado, R. et al., HIV latency in the humanized BLT mouse. J. Virol. 2012. 86: 339-347.
Wege, A. K., Melkus, M. W., Denton, P. W., Estes, J. D. and Garcia, J. V., Functional and phenotypic characterization of the humanized BLT mouse model. Curr. Top. Microbiol. Immunol. 2008. 324: 149-165.
Weichseldorfer, M., Heredia, A., Reitz, M., Bryant, J. L. and Latinovic, O. S., Use of humanized mouse models for studying HIV-1 infection, pathogenesis and persistence. Journal of AIDS and HIV Treatment 2020. 2: 23-29.
Stripecke, R., Münz, C., Schuringa, J. J., Bissig, K. D., Soper, B., Meeham, T. et al., Innovations, challenges, and minimal information for standardization of humanized mice. EMBO Mol. Med. 2020. 12: e8662.
Brainard, D. M., Seung, E., Frahm, N., Cariappa, A., Bailey, C. C., Hart, W. K. et al., Induction of robust cellular and humoral virus-specific adaptive immune responses in human immunodeficiency virus-infected humanized BLT mice. J. Virol. 2009. 83: 7305-7321.
Dudek, T. E., No, D. C., Seung, E., Vrbanac, V. D., Fadda, L., Bhoumik, P. et al., Rapid evolution of HIV-1 to functional CD8(+) T cell responses in humanized BLT mice. Sci. Transl. Med. 2012. 4: 143ra98.
Garcia, F., Lejeune, M., Climent, N., Gil, C., Alcami, J., Morente, V. et al., Therapeutic immunization with dendritic cells loaded with heat-inactivated autologous HIV-1 in patients with chronic HIV-1 infection. J. Infect. Dis. 2005. 191: 1680-1685.
Kloverpris, H., Karlsson, I., Bonde, J., Thorn, M., Vinner, L., Pedersen, A. E. et al., Induction of novel CD8+ T-cell responses during chronic untreated HIV-1 infection by immunization with subdominant cytotoxic T-lymphocyte epitopes. AIDS 2009. 23: 1329-1340.
Claiborne, D. T., Dudek, T. E., Maldini, C. R., Power, K. A., Ghebremichael, M., Seung, E. et al., Immunization of BLT humanized mice redirects T cell responses to Gag and reduces acute hiv-1 viremia. J. Virol. 2019. 93.
Betts, M. R., Nason, M. C., West, S. M., De Rosa, S. C., Migueles, S. A., Abraham, J. et al., HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood 2006. 107: 4781-4789.
Migueles, S. A., Laborico, A. C., Shupert, W. L., Sabbaghian, M. S., Rabin, R., Hallahan, C. W. et al., HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nat. Immunol. 2002. 3: 1061-1068.
Thompson, K. A., Strayer, D. R., Salvato, P. D., Thompson, C. E., Klimas, N., Molavi, A. et al., Results of a double-blind placebo-controlled study of the double-stranded RNA drug polyI:polyC12U in the treatment of HIV infection. Eur. J. Clin. Microbiol. Infect. Dis. 1996. 15: 580-587.
Armstrong, J. A., McMahon, D., Huang, X. L., Pazin, G. J., Gupta, P., Rinaldo, C. R., Jr. et al., A phase I study of ampligen in human immunodeficiency virus-infected subjects. J. Infect. Dis. 1992. 166: 717-722.
Miller, E., Spadaccia, M., Sabado, R., Chertova, E., Bess, J., Trubey, C. M. et al., Autologous aldrithiol-2-inactivated HIV-1 combined with polyinosinic-polycytidylic acid-poly-L-lysine carboxymethylcellulose as a vaccine platform for therapeutic dendritic cell immunotherapy. Vaccine 2015. 33: 388-395.
Apostólico, J. S., Lunardelli, V. A. S., Yamamoto, M. M., Cunha-Neto, E., Boscardin, S. B. and Rosa, D. S., Poly(I:C) potentiates T cell immunity to a dendritic cell targeted HIV-multiepitope vaccine. Front. Immunol. 2019. 10: 843.
Cheng, L., Wang, Q., Li, G., Banga, R., Ma, J., Yu, H. et al., TLR3 agonist and CD40-targeting vaccination induces immune responses and reduces HIV-1 reservoirs. J. Clin. Invest. 2018. 128: 4387-4396.
Gómez, C. E., Nájera, J. L., Sánchez, R., Jiménez, V. and Esteban, M. Multimeric soluble CD40 ligand (sCD40L) efficiently enhances HIV specific cellular immune responses during DNA prime and boost with attenuated poxvirus vectors MVA and NYVAC expressing HIV antigens. Vaccine 2009. 27: 3165-3174.
Alvarez-Carbonell, D., Garcia-Mesa, Y., Milne, S., Das, B., Dobrowolski, C., Rojas, R. et al., Toll-like receptor 3 activation selectively reverses HIV latency in microglial cells. Retrovirology 2017. 14: 9.
Martin-Gayo, E., Cole, M. B., Kolb, K. E., Ouyang, Z., Cronin, J., Kazer, S. W. et al., A reproducibility-based computational framework identifies an inducible, enhanced antiviral state in dendritic cells from HIV-1 elite controllers. Genome Biol. 2018. 19: 10.
Lévy, Y., Thiébaut, R., Montes, M., Lacabaratz, C., Sloan, L., King, B. et al., Dendritic cell-based therapeutic vaccine elicits polyfunctional HIV-specific T-cell immunity associated with control of viral load. Eur. J. Immunol. 2014. 44: 2802-2810.
He, R., Hou, S., Liu, C., Zhang, A., Bai, Q., Han, M. et al., Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection. Nature 2016. 537: 412-428.
Leong, Y. A., Chen, Y., Ong, H. S., Wu, D., Man, K., Deleage, C. et al., CXCR5(+) follicular cytotoxic T cells control viral infection in B cell follicles. Nat. Immunol. 2016. 17: 1187-1196.
Murooka, T. T., Deruaz, M., Marangoni, F., Vrbanac, V. D., Seung, E., von Andrian, U. H. et al., HIV-infected T cells are migratory vehicles for viral dissemination. Nature 2012. 490: 283-287.
Karpel, M. E., Boutwell, C. L. and Allen, T. M., BLT humanized mice as a small animal model of HIV infection. Curr. Opin. Virol. 2015. 13: 75-80.
Zeng, M., Haase, A. T. and Schacker, T. W., Lymphoid tissue structure and HIV-1 infection: life or death for T cells. Trends Immunol. 2012. 33: 306-314.
Sanchez, J. L., Hunt, P. W., Reilly, C. S., Hatano, H., Beilman, G. J., Khoruts, A. et al., Lymphoid fibrosis occurs in long-term nonprogressors and persists with antiretroviral therapy but may be reversible with curative interventions. J. Infect. Dis. 2015. 211: 1068-1075.
Giménez, E., Blanco-Lobo, P., Muñoz-Cobo, B., Solano, C., Amat, P., Pérez-Romero, P. et al., Role of cytomegalovirus (CMV)-specific polyfunctional CD8+ T-cells and antibodies neutralizing virus epithelial infection in the control of CMV infection in an allogeneic stem-cell transplantation setting. J. Gen. Virol. 2015. 96: 2822-2831.
Grifoni, A., Costa-Ramos, P., Pham, J., Tian, Y., Rosales, S. L., Seumois, G. et al., Cutting edge: transcriptional profiling reveals multifunctional and cytotoxic antiviral responses of zika virus-specific CD8(+) T cells. J. Immunol. 2018. 201: 3487-3491.
Cossarizza, A., Chang, H. D., Radbruch, A., Acs, A., Adam, D., Adam-Klages, S. et al., Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur. J. Immunol. 2019. 49: 1457-1973.
معلومات مُعتمدة: R21 AI140930 United States AI NIAID NIH HHS
فهرسة مساهمة: Keywords: CD8+ T cell; dendritic cell; hBLT mouse; lymphoid tissue; vaccine
المشرفين على المادة: 0 (AIDS Vaccines)
0 (Adjuvants, Immunologic)
0 (HIV Core Protein p24)
O84C90HH2L (Poly I-C)
تواريخ الأحداث: Date Created: 20211222 Date Completed: 20220505 Latest Revision: 20220505
رمز التحديث: 20240628
DOI: 10.1002/eji.202149502
PMID: 34935145
قاعدة البيانات: MEDLINE
الوصف
تدمد:1521-4141
DOI:10.1002/eji.202149502