دورية أكاديمية

Membrane Remodeling and Matrix Dispersal Intermediates During Mammalian Acrosomal Exocytosis.

التفاصيل البيبلوغرافية
العنوان: Membrane Remodeling and Matrix Dispersal Intermediates During Mammalian Acrosomal Exocytosis.
المؤلفون: Leung MR; Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands.; The Division of Structural Biology, Wellcome Centre for Human Genetics, The University of Oxford, Oxford, United Kingdom., Ravi RT; Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands., Gadella BM; Department of Farm and Animal Health and Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands., Zeev-Ben-Mordehai T; Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands.; The Division of Structural Biology, Wellcome Centre for Human Genetics, The University of Oxford, Oxford, United Kingdom.
المصدر: Frontiers in cell and developmental biology [Front Cell Dev Biol] 2021 Dec 10; Vol. 9, pp. 765673. Date of Electronic Publication: 2021 Dec 10 (Print Publication: 2021).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Frontiers Media S.A Country of Publication: Switzerland NLM ID: 101630250 Publication Model: eCollection Cited Medium: Print ISSN: 2296-634X (Print) Linking ISSN: 2296634X NLM ISO Abbreviation: Front Cell Dev Biol Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Lausanne : Frontiers Media S.A., [2013]-
مستخلص: To become fertilization-competent, mammalian sperm must undergo a complex series of biochemical and morphological changes in the female reproductive tract. These changes, collectively called capacitation, culminate in the exocytosis of the acrosome, a large vesicle overlying the nucleus. Acrosomal exocytosis is not an all-or-nothing event but rather a regulated process in which vesicle cargo disperses gradually. However, the structural mechanisms underlying this controlled release remain undefined. In addition, unlike other exocytotic events, fusing membranes are shed as vesicles; the cell thus loses the entire anterior two-thirds of its plasma membrane and yet remains intact, while the remaining nonvesiculated plasma membrane becomes fusogenic. Precisely how cell integrity is maintained throughout this drastic vesiculation process is unclear, as is how it ultimately leads to the acquisition of fusion competence. Here, we use cryoelectron tomography to visualize these processes in unfixed, unstained, fully hydrated sperm. We show that paracrystalline structures within the acrosome disassemble during capacitation and acrosomal exocytosis, representing a plausible mechanism for gradual dispersal of the acrosomal matrix. We find that the architecture of the sperm head supports an atypical membrane fission-fusion pathway that maintains cell integrity. Finally, we detail how the acrosome reaction transforms both the micron-scale topography and the nanoscale protein landscape of the sperm surface, thus priming the sperm for fertilization.
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
(Copyright © 2021 Leung, Ravi, Gadella and Zeev-Ben-Mordehai.)
References: Gamete Res. 1988 May;20(1):11-24. (PMID: 3235025)
J Clin Invest. 2002 Sep;110(6):731-6. (PMID: 12235100)
Nat Microbiol. 2016 Apr 18;1(6):16050. (PMID: 27572837)
Elife. 2020 Jun 02;9:. (PMID: 32484434)
Nature. 1951 Oct 20;168(4277):697-8. (PMID: 14882325)
Science. 2006 Aug 18;313(5789):944-8. (PMID: 16917055)
J Struct Biol. 2015 May;190(2):143-54. (PMID: 25770733)
J Biol Chem. 2013 Sep 27;288(39):28104-15. (PMID: 23943622)
Hum Reprod. 1993 Aug;8(8):1235-9. (PMID: 8408520)
Adv Anat Embryol Cell Biol. 2016;220:15-33. (PMID: 27194348)
Biol Reprod. 2001 Jan;64(1):148-56. (PMID: 11133669)
Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9393-9400. (PMID: 32295885)
Dev Biol. 2003 Dec 1;264(1):141-52. (PMID: 14623237)
J Exp Zool. 1979 Apr;208(1):41-56. (PMID: 381567)
Biol Reprod. 2006 Dec;75(6):933-9. (PMID: 16957023)
Mol Hum Reprod. 2013 Dec;19(12):785-93. (PMID: 24071444)
Aust J Sci Res B. 1951 Nov;4(4):581-96. (PMID: 14895481)
J Cell Biol. 1967 Sep;34(3):C1-5. (PMID: 6050956)
Arch Androl. 1981 Dec;7(4):283-92. (PMID: 6797354)
Hum Reprod. 1987 Feb;2(2):109-19. (PMID: 3584413)
Mol Biol Cell. 2020 Jan 15;31(2):87-100. (PMID: 31935172)
J Struct Biol. 2019 Dec 1;208(3):107389. (PMID: 31536774)
Anat Rec. 1988 Mar;220(3):267-80. (PMID: 3364752)
J Struct Biol. 2017 Feb;197(2):73-82. (PMID: 27444390)
Mol Reprod Dev. 2016 Oct;83(10):860-874. (PMID: 27256723)
J Struct Biol. 2011 Sep;175(3):288-99. (PMID: 21616153)
Nature. 2005 Mar 10;434(7030):234-8. (PMID: 15759005)
Mol Hum Reprod. 1997 Mar;3(3):175-94. (PMID: 9237244)
J Ultrastruct Res. 1972 Mar;38(5):591-604. (PMID: 5012824)
Biol Reprod. 2014 May;90(5):112. (PMID: 24671881)
Syst Biol Reprod Med. 2010 Oct;56(5):334-48. (PMID: 20849222)
Nature. 1959 Aug 8;184(Suppl 7):466-7. (PMID: 13809155)
J Cell Sci. 1989 Jul;93 ( Pt 3):467-79. (PMID: 2606938)
Proc Natl Acad Sci U S A. 2020 May 26;117(21):11493-11502. (PMID: 32393636)
Microsc Microanal. 2008 Oct;14(5):375-9. (PMID: 18793481)
Biol Reprod. 1988 Jun;38(5):1171-80. (PMID: 3408784)
Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):4449-54. (PMID: 22392984)
Biol Reprod. 2009 Aug;81(2):396-405. (PMID: 19369646)
Curr Biol. 2005 Sep 20;15(18):1645-50. (PMID: 16169486)
Theriogenology. 2005 Jan 15;63(2):342-51. (PMID: 15626403)
Anat Rec. 1991 Feb;229(2):186-94. (PMID: 2012305)
J Microsc. 2006 Apr;222(Pt 1):42-7. (PMID: 16734713)
Nature. 2014 Apr 24;508(7497):483-7. (PMID: 24739963)
Biochem J. 1991 May 1;275 ( Pt 3):759-66. (PMID: 1903927)
FASEB J. 1997 Jul;11(8):670-82. (PMID: 9240968)
Cell Tissue Res. 2016 Jan;363(1):147-157. (PMID: 26271197)
J Struct Biol. 2005 Oct;152(1):36-51. (PMID: 16182563)
Theriogenology. 2014 Mar 1;81(4):613-24. (PMID: 24377861)
J Ultrastruct Res. 1976 Oct;57(1):54-64. (PMID: 978783)
Mol Hum Reprod. 2015 Mar;21(3):244-54. (PMID: 25452326)
Mol Membr Biol. 2007 Jul-Aug;24(4):313-24. (PMID: 17520487)
Int J Dev Biol. 2008;52(5-6):511-22. (PMID: 18649264)
Nat Methods. 2019 Nov;16(11):1146-1152. (PMID: 31591575)
PLoS One. 2010 Jun 18;5(6):e11204. (PMID: 20585455)
J Cell Sci. 2018 Aug 10;132(4):. (PMID: 29967032)
Fertil Steril. 1986 May;45(5):701-7. (PMID: 3699172)
J Cell Sci. 2012 Nov 1;125(Pt 21):4985-90. (PMID: 22946049)
Med Phys. 2012 Feb;39(2):603-7. (PMID: 22320769)
J Struct Biol. 1994 Jan-Feb;112(1):41-8. (PMID: 8031641)
Proc Natl Acad Sci U S A. 2014 Nov 4;111(44):15635-40. (PMID: 25331897)
فهرسة مساهمة: Keywords: acrosome reaction; cryo-elecron tomography; fertilization; mammalian sperm; membrane fusion
تواريخ الأحداث: Date Created: 20211227 Latest Revision: 20211228
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC8708559
DOI: 10.3389/fcell.2021.765673
PMID: 34957098
قاعدة البيانات: MEDLINE
الوصف
تدمد:2296-634X
DOI:10.3389/fcell.2021.765673