دورية أكاديمية

The Effects of Sub-inhibitory Antibiotic Concentrations on Pseudomonas aeruginosa : Reduced Susceptibility Due to Mutations.

التفاصيل البيبلوغرافية
العنوان: The Effects of Sub-inhibitory Antibiotic Concentrations on Pseudomonas aeruginosa : Reduced Susceptibility Due to Mutations.
المؤلفون: Ramsay KA; Department of Biochemistry, University of Otago, Dunedin, New Zealand., McTavish SM; Department of Biochemistry, University of Otago, Dunedin, New Zealand., Wardell SJT; Department of Biochemistry, University of Otago, Dunedin, New Zealand., Lamont IL; Department of Biochemistry, University of Otago, Dunedin, New Zealand.
المصدر: Frontiers in microbiology [Front Microbiol] 2021 Dec 20; Vol. 12, pp. 789550. Date of Electronic Publication: 2021 Dec 20 (Print Publication: 2021).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Frontiers Research Foundation Country of Publication: Switzerland NLM ID: 101548977 Publication Model: eCollection Cited Medium: Print ISSN: 1664-302X (Print) Linking ISSN: 1664302X NLM ISO Abbreviation: Front Microbiol Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Lausanne : Frontiers Research Foundation
مستخلص: Pseudomonas aeruginosa chronically infects in the lungs of people with cystic fibrosis and other forms of lung disease. Infections are treated with antibiotics, but over time, the bacteria acquire mutations that reduce their antibiotic susceptibility. The effects of inhibitory amounts of antibiotics in selecting for antibiotic-resistant mutants have been well studied. However, the concentrations of antibiotics that reach infecting bacteria can be sub-inhibitory and but may nonetheless promote emergence of antibiotic-resistant bacteria. Therefore, the aim of this research was to investigate the effects of sub-inhibitory concentrations of antibiotics on the antibiotic susceptibility of P. aeruginosa . Two P. aeruginosa reference strains, PAO1 and PA14, and six isolates from individuals with cystic fibrosis were studied. The bacteria were passaged in the presence of antibiotics (ceftazidime, ciprofloxacin, meropenem or tobramycin) at sub-inhibitory amounts. Fifteen populations of bacteria (up to five per strain) were exposed to each of the four antibiotics. Antibiotic susceptibility was determined following 10 passages on agar supplemented with antibiotic and compared with susceptibility prior to antibiotic exposure. Antibiotic exposure resulted in susceptibility being significantly (>2-fold) reduced for 13 of the 60 populations. Seven samples had reduced susceptibility to ciprofloxacin, three to tobramycin, two to ceftazidime and one to meropenem. Whole-genome sequencing revealed the mutations arising following antibiotic exposure. Mutants with reduced antibiotic susceptibility had mutations in genes known to affect antibiotic resistance, including regulators of efflux pumps ( mexR , mexS , mexZ and nalC ) and the fusA1 gene that is associated with aminoglycoside resistance. Genes not previously associated with resistance, including gacS , sigX and crfX and two genes with no known function, were also mutated in some isolates with reduced antibiotic susceptibility. Our results show that exposure to sub-inhibitory amounts of antibiotics can select for mutations that reduce the susceptibility of P. aeruginosa to antibiotics and that the profile of mutations is different from that arising during selection with inhibitory antibiotic concentrations. It is likely that exposure to sub-inhibitory amounts of antibiotics during infection contributes to P. aeruginosa becoming antibiotic-resistant.
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
(Copyright © 2021 Ramsay, McTavish, Wardell and Lamont.)
References: J Bacteriol. 2012 Aug;194(16):4301-11. (PMID: 22685281)
mBio. 2020 May 26;11(3):. (PMID: 32457248)
PLoS One. 2013 Nov 18;8(11):e80407. (PMID: 24260387)
mSphere. 2017 Jul 19;2(4):. (PMID: 28744479)
PLoS One. 2010 Jun 25;5(6):e11147. (PMID: 20593022)
Antimicrob Agents Chemother. 1996 Sep;40(9):2021-8. (PMID: 8878574)
Cochrane Database Syst Rev. 2018 Mar 30;3:CD001021. (PMID: 29607494)
Front Microbiol. 2020 Oct 21;11:579495. (PMID: 33193206)
Genome Biol. 2006;7(10):R90. (PMID: 17038190)
BMC Microbiol. 2013 Jul 23;13:170. (PMID: 23879797)
Respir Care. 2021 Sep;66(9):1446-1457. (PMID: 34031222)
Clin Microbiol Rev. 2019 May 29;32(3):. (PMID: 31142499)
Annu Rev Microbiol. 2018 Sep 08;72:209-230. (PMID: 30200850)
Microb Genom. 2021 Nov;7(11):. (PMID: 34826267)
Front Microbiol. 2015 Jan 21;6:8. (PMID: 25653649)
PLoS Biol. 2017 Aug 8;15(8):e2001586. (PMID: 28792497)
J Clin Microbiol. 2017 Aug;55(8):2304-2308. (PMID: 28468856)
Mol Biol Evol. 2017 Sep 1;34(9):2229-2244. (PMID: 28541480)
Antimicrob Agents Chemother. 2013 Sep;57(9):4215-21. (PMID: 23774442)
Front Genet. 2018 Oct 18;9:451. (PMID: 30405685)
J Bacteriol. 2001 Sep;183(18):5395-401. (PMID: 11514525)
Lancet. 2014 Aug 23;384(9944):703-13. (PMID: 25152272)
Expert Opin Drug Metab Toxicol. 2021 Jan;17(1):53-68. (PMID: 33213220)
Curr Opin Microbiol. 2018 Feb;41:15-20. (PMID: 29166621)
Am J Respir Cell Mol Biol. 2018 Apr;58(4):428-439. (PMID: 29372812)
Lancet. 2016 Nov 19;388(10059):2519-2531. (PMID: 27140670)
Bioinformatics. 2014 Aug 1;30(15):2114-20. (PMID: 24695404)
Antimicrob Agents Chemother. 2016 Jun 20;60(7):4229-36. (PMID: 27139485)
J Membr Biol. 2018 Feb;251(1):35-49. (PMID: 29063141)
Curr Protoc Bioinformatics. 2020 Jun;70(1):e102. (PMID: 32559359)
J Bacteriol. 2014 Jan;196(2):345-56. (PMID: 24187091)
Antimicrob Agents Chemother. 2018 Sep 24;62(10):. (PMID: 30082283)
NPJ Biofilms Microbiomes. 2020 Jul 24;6(1):28. (PMID: 32709907)
Antimicrob Agents Chemother. 2018 Jan 25;62(2):. (PMID: 29133559)
Curr Opin Infect Dis. 2015 Dec;28(6):547-56. (PMID: 26524327)
J Cyst Fibros. 2011 Dec;10(6):387-400. (PMID: 21775220)
J Cyst Fibros. 2012 Dec;11(6):461-79. (PMID: 23137712)
Int J Antimicrob Agents. 2016 Dec;48(6):740-743. (PMID: 28128097)
J Clin Med. 2020 Nov 24;9(12):. (PMID: 33255354)
Mol Microbiol. 2004 Sep;53(5):1423-36. (PMID: 15387820)
Antimicrob Agents Chemother. 2018 Oct 24;62(11):. (PMID: 30201819)
FEMS Microbiol Lett. 2017 Aug 1;364(14):. (PMID: 28854668)
Nature. 2000 Aug 31;406(6799):959-64. (PMID: 10984043)
J Med Microbiol. 2019 Jan;68(1):1-10. (PMID: 30605076)
Antimicrob Agents Chemother. 2018 Jul 27;62(8):. (PMID: 29760140)
Microbiol Rev. 1996 Sep;60(3):539-74. (PMID: 8840786)
Genome Biol Evol. 2019 Jan 1;11(1):109-120. (PMID: 30496396)
Front Microbiol. 2012 Nov 28;3:408. (PMID: 23233851)
Antimicrob Agents Chemother. 2019 Sep 30;63(12):. (PMID: 31570397)
Bioinformatics. 2014 Jul 15;30(14):2068-9. (PMID: 24642063)
Front Microbiol. 2018 Apr 06;9:685. (PMID: 29681898)
Antimicrob Agents Chemother. 2018 Mar 27;62(4):. (PMID: 29437613)
Clin Microbiol Rev. 2009 Oct;22(4):582-610. (PMID: 19822890)
Sci Rep. 2018 Nov 21;8(1):17212. (PMID: 30464317)
Nat Commun. 2018 Apr 23;9(1):1599. (PMID: 29686259)
Methods Mol Biol. 2014;1151:165-88. (PMID: 24838886)
mBio. 2017 Oct 31;8(5):. (PMID: 29089424)
Front Microbiol. 2015 Sep 29;6:1036. (PMID: 26483767)
فهرسة مساهمة: Keywords: Pseudomonas aeruginosa; antibiotic resistance; cystic fibrosis; genetic mutations; resistance mechanisms; sub-inhibitory concentration; sub-lethal concentration
تواريخ الأحداث: Date Created: 20220106 Latest Revision: 20231108
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC8721600
DOI: 10.3389/fmicb.2021.789550
PMID: 34987489
قاعدة البيانات: MEDLINE
الوصف
تدمد:1664-302X
DOI:10.3389/fmicb.2021.789550