دورية أكاديمية

Aminochrome Induces Neuroinflammation and Dopaminergic Neuronal Loss: A New Preclinical Model to Find Anti-inflammatory and Neuroprotective Drugs for Parkinson's Disease.

التفاصيل البيبلوغرافية
العنوان: Aminochrome Induces Neuroinflammation and Dopaminergic Neuronal Loss: A New Preclinical Model to Find Anti-inflammatory and Neuroprotective Drugs for Parkinson's Disease.
المؤلفون: De Araújo FM; Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil.; Clinical & Experimental Neuroscience (NiCE), Institute for Bio-Health Research of Murcia (IMIB), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, Campus Mare Nostrum, Murcia, Spain., Frota AF; Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil., de Jesus LB; Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil., Macedo TC; Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil., Cuenca-Bermejo L; Clinical & Experimental Neuroscience (NiCE), Institute for Bio-Health Research of Murcia (IMIB), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, Campus Mare Nostrum, Murcia, Spain., Sanchez-Rodrigo C; Clinical & Experimental Neuroscience (NiCE), Institute for Bio-Health Research of Murcia (IMIB), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, Campus Mare Nostrum, Murcia, Spain., Ferreira KMS; Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil., de Oliveira JVR; Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil., de Fatima Dias Costa M; Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil., Segura-Aguilar J; Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia, 1027, Santiago, Chile., Costa SL; Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil., Herrero MT; Clinical & Experimental Neuroscience (NiCE), Institute for Bio-Health Research of Murcia (IMIB), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, Campus Mare Nostrum, Murcia, Spain. mtherrer@um.es., Silva VDA; Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil. vdsilva@ufba.br.
المصدر: Cellular and molecular neurobiology [Cell Mol Neurobiol] 2023 Jan; Vol. 43 (1), pp. 265-281. Date of Electronic Publication: 2022 Jan 06.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic/Plenum Publishers Country of Publication: United States NLM ID: 8200709 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-6830 (Electronic) Linking ISSN: 02724340 NLM ISO Abbreviation: Cell Mol Neurobiol Subsets: MEDLINE
أسماء مطبوعة: Publication: 1999- : New York : Kluwer Academic/Plenum Publishers
Original Publication: New York : Plenum Press, c1981-
مواضيع طبية MeSH: Parkinson Disease*/metabolism , Neuroprotective Agents*/pharmacology , Neuroprotective Agents*/therapeutic use , Neuroprotective Agents*/metabolism, Rats ; Male ; Animals ; Rats, Wistar ; Oxidopamine ; Neuroinflammatory Diseases ; Dopamine/metabolism ; Tumor Necrosis Factor-alpha/metabolism ; NLR Family, Pyrin Domain-Containing 3 Protein/metabolism ; Dopaminergic Neurons/metabolism ; Anti-Inflammatory Agents/pharmacology ; Anti-Inflammatory Agents/therapeutic use ; Anti-Inflammatory Agents/metabolism ; Disease Models, Animal ; Microglia/metabolism
مستخلص: Studies have suggested aminochrome as an endogenous neurotoxin responsible for the dopaminergic neuron degeneration in Parkinson's disease (PD). However, neuroinflammation, an important alteration in PD pathogenesis, has been strictly induced in vitro by aminochrome. The aim of this study was to characterize the neuroinflammation induced in vivo by aminochrome. Wistar rats (male, 250-270 g) received a unilateral single dose by stereotaxic injection of saline into three sites in the striatum in the negative control group, or 32 nmol 6-hydroxydopamine (6-OHDA) in the positive control, or 6 nmol aminochrome. After 14 days, histological and molecular analyses were performed. We observed by immunofluorescence that aminochrome, as well as 6-OHDA, induced an increase in the number of Iba-1 + cells and in the number of activated (Iba-1 + / CD68 + ) microglia. An increase in the number of S100b + cells and in the GFAP expression were also evidenced in the striatum and the SNpc of animals from aminochrome and positive control group. Dopaminergic neuronal loss was marked by reduction of TH + cells and confirmed with reduction in the number of Nissl-stained neurons in the SNpc of rats from aminochrome and positive control groups. In addition, we observed by qPCR that aminocrhome induced an increase in the levels of IL-1β, TNF-α, NLRP3, CCL5 and CCR2 mRNA in the SNpc. This work provides the first evidence of microgliosis, astrogliosis and neuroinflammation induced by aminochrome in an in vivo model. Since aminochrome is an endogenous molecule derived from dopamine oxidation present in the targeted neurons in PD, these results reinforce the potential of aminochrome as a useful preclinical model to find anti-inflammatory and neuroprotective drugs for PD. Aminochrome induced dopaminergic neuronal loss, microglial activation, astroglial activation and neuroinflammation marked by an increase in NLRP3, IL1β, TNF-α, CCL2, CCL5 and CCR2.
(© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Anderson SR, Vetter ML (2019) Developmental roles of microglia: a window into mechanisms of disease. Dev Dyn 248:98–117.
Arriagada C, Paris I, De Las S, Matas MJ et al (2004) On the neurotoxicity mechanism of leukoaminochrome o-semiquinone radical derived from dopamine oxidation: mitochondria damage, necrosis, and hydroxyl radical formation. Neurobiol Dis 16:468–477. https://doi.org/10.1016/j.nbd.2004.03.014. (PMID: 10.1016/j.nbd.2004.03.014)
Bernaus A, Blanco S, Sevilla A (2020) Glia crosstalk in neuroinflammatory diseases. Front Cell Neurosci 14:209. (PMID: 10.3389/fncel.2020.00209)
Briceño A, Muñoz P, Brito P et al (2016) Aminochrome toxicity is mediated by inhibition of microtubules polymerization through the formation of adducts with tubulin. Neurotox Res 29:381–393. https://doi.org/10.1007/s12640-015-9560-x. (PMID: 10.1007/s12640-015-9560-x)
Chatterjee K, Roy A, Banerjee R et al (2020) Inflammasome and α-synuclein in Parkinson’s disease: a cross-sectional study. J Neuroimmunol 338:577089. https://doi.org/10.1016/j.jneuroim.2019.577089. (PMID: 10.1016/j.jneuroim.2019.577089)
Chistiakov DA, Killingsworth MC, Myasoedova VA et al (2017) CD68/macrosialin: not just a histochemical marker. Lab Invest 97:4–13. https://doi.org/10.1038/labinvest.2016.116. (PMID: 10.1038/labinvest.2016.116)
Codolo G, Plotegher N, Pozzobon T et al (2013) Triggering of inflammasome by aggregated α-synuclein, an inflammatory response in synucleinopathies. PLoS ONE 8:e55375. https://doi.org/10.1371/journal.pone.0055375. (PMID: 10.1371/journal.pone.0055375)
Costa T, Fernandez-Villalba E, Izura V et al (2020) Combined 1-deoxynojirimycin and ibuprofen treatment decreases microglial activation, phagocytosis and dopaminergic degeneration in MPTP-treated mice. J Neuroimmune Pharmacol. https://doi.org/10.1007/s11481-020-09925-8. (PMID: 10.1007/s11481-020-09925-8)
Croisier E, Moran LB, Dexter DT et al (2005) Microglial inflammation in the parkinsonian substantia nigra: relationship to alpha-synuclein deposition. J Neuroinflamm. https://doi.org/10.1186/1742-2094-2-14. (PMID: 10.1186/1742-2094-2-14)
de Araújo FM, Ferreira RS, Souza CS et al (2018) Aminochrome decreases NGF, GDNF and induces neuroinflammation in organotypic midbrain slice cultures. Neurotoxicology 66:98–106. https://doi.org/10.1016/j.neuro.2018.03.009. (PMID: 10.1016/j.neuro.2018.03.009)
Deng H, Wang P, Jankovic J (2018) The genetics of Parkinson disease. Ageing Res Rev 42:72–85. (PMID: 10.1016/j.arr.2017.12.007)
Díaz-Véliz G, Mora S, Dossi MT et al (2002) Behavioral effects of aminochrome and dopachrome injected in the rat substantia nigra. Pharmacol Biochem Behav 73:843–850. https://doi.org/10.1016/S0091-3057(02)00923-1. (PMID: 10.1016/S0091-3057(02)00923-1)
Dorsey ER, Sherer T, Okun MS, Bloemd BR (2018) The emerging evidence of the Parkinson pandemic. J Parkinson’s Dis 8:S3–S8. (PMID: 10.3233/JPD-181474)
Dresselhaus EC, Meffert MK (2019) Cellular specificity of NF-κB function in the nervous system. Front Immunol 10:1043. (PMID: 10.3389/fimmu.2019.01043)
Fan Z, Liang Z, Yang H et al (2017) Tenuigenin protects dopaminergic neurons from inflammation via suppressing NLRP3 inflammasome activation in microglia. J Neuroinflamm 14:1–12. https://doi.org/10.1186/s12974-017-1036-x. (PMID: 10.1186/s12974-017-1036-x)
Fonseca-Fonseca L et al (2019) KM-34, a novel antioxidant compound, protects against 6-hydroxydopamine-induced mitochondrial damage and neurotoxicity. Neurotox Res 36:279–291. https://doi.org/10.1007/S12640-017-9851-5. (PMID: 10.1007/S12640-017-9851-5)
Fonseca-Fonseca L et al (2021) JM-20 protects against 6-hydroxydopamine-induced neurotoxicity in models of Parkinson’s disease: mitochondrial protection and antioxidant properties. Neurotoxicology 82:89–98. https://doi.org/10.1016/J.NEURO.2020.11.005. (PMID: 10.1016/J.NEURO.2020.11.005)
Ghadery C, Koshimori Y, Coakeley S et al (2017) Microglial activation in Parkinson’s disease using [18F]-FEPPA. J Neuroinflamm 14:1–9. https://doi.org/10.1186/s12974-016-0778-1. (PMID: 10.1186/s12974-016-0778-1)
Gil-Martínez AL, Cuenca L, Estrada C et al (2018) Unexpected exacerbation of neuroinflammatory response after a combined therapy in old Parkinsonian mice. Front Cell Neurosci 12:451. https://doi.org/10.3389/fncel.2018.00451. (PMID: 10.3389/fncel.2018.00451)
Glass CK, Saijo K, Winner B et al (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934. (PMID: 10.1016/j.cell.2010.02.016)
Goldman JG, Postuma R (2014) Premotor and nonmotor features of Parkinson’s disease. Curr Opin Neurol 27:434–441. (PMID: 10.1097/WCO.0000000000000112)
Gordon R, Albornoz EA, Christie DC et al (2018) Inflammasome inhibition prevents -synuclein pathology and dopaminergic neurodegeneration in mice. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aah4066. (PMID: 10.1126/scitranslmed.aah4066)
Haque ME, Akther M, Jakaria M et al (2020) Targeting the microglial NLRP3 inflammasome and its role in Parkinson’s disease. Mov Disord 35:20–33. (PMID: 10.1002/mds.27874)
Herrera A, Muñoz P, Paris I et al (2016) Aminochrome induces dopaminergic neuronal dysfunction: a new animal model for Parkinson’s disease. Cell Mol Life Sci 73:3583–3597. https://doi.org/10.1007/s00018-016-2182-5. (PMID: 10.1007/s00018-016-2182-5)
Herrera-Soto A, Díaz-Veliz G, Mora S et al (2017) On the role of DT-diaphorase inhibition in aminochrome-induced neurotoxicity in vivo. Neurotox Res 32:134–140. https://doi.org/10.1007/s12640-017-9719-8. (PMID: 10.1007/s12640-017-9719-8)
Herrero MT, Estrada C, Maatouk L, Vyas S (2015) Inflammation in Parkinson’s disease: role of glucocorticoids. Front Neuroanatomy 9:32. (PMID: 10.3389/fnana.2015.00032)
Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8:382–397. (PMID: 10.1016/S1474-4422(09)70062-6)
Huenchuguala S, Munõz P, Zavala P et al (2014) Glutathione transferase mu 2 protects glioblastoma cells against aminochrome toxicity by preventing autophagy and lysosome dysfunction. Autophagy 10:618–630. https://doi.org/10.4161/auto.27720. (PMID: 10.4161/auto.27720)
Huenchuguala S, Munoz P, Segura-Aguilar J (2017) The importance of mitophagy in maintaining mitochondrial function in U373MG cells. Bafilomycin A1 restores aminochrome-induced mitochondrial damage. ACS Chem Neurosci 8:2247–2253. https://doi.org/10.1021/acschemneuro.7b00152. (PMID: 10.1021/acschemneuro.7b00152)
Janda E, Boi L, Carta AR (2018) Microglial phagocytosis and its regulation: a therapeutic target in parkinson’s disease? Front Mol Neurosci 11:144. (PMID: 10.3389/fnmol.2018.00144)
Javed H, Thangavel R, Selvakumar GP et al (2020) NLRP3 inflammasome and glia maturation factor coordinately regulate neuroinflammation and neuronal loss in MPTP mouse model of Parkinson’s disease. Int Immunopharmacol 83:106441. https://doi.org/10.1016/j.intimp.2020.106441. (PMID: 10.1016/j.intimp.2020.106441)
Karabiyik C, Lee MJ, Rubinsztein DC (2017) Autophagy impairment in Parkinson’s disease. Essays Biochem 61:711–720. (PMID: 10.1042/EBC20170023)
Kim YS, Joh TH (2006) Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Exp Mol Med 38:333–347. (PMID: 10.1038/emm.2006.40)
Kirkley KS, Popichak KA, Afzali MF et al (2017) Microglia amplify inflammatory activation of astrocytes in manganese neurotoxicity. J Neuroinflamm 14:1–18. https://doi.org/10.1186/s12974-017-0871-0. (PMID: 10.1186/s12974-017-0871-0)
Koshimori Y, Ko JH, Mizrahi R et al (2015) Imaging striatal microglial activation in patients with Parkinson’s disease. PLoS ONE 10:e0138721. https://doi.org/10.1371/journal.pone.0138721. (PMID: 10.1371/journal.pone.0138721)
Lang Y, Chu F, Shen D et al (2018) Role of inflammasomes in neuroimmune and neurodegenerative diseases: a systematic review. Mediat Inflamm.
Lecca D, Janda E, Mulas G et al (2018) Boosting phagocytosis and anti-inflammatory phenotype in microglia mediates neuroprotection by PPARγ agonist MDG548 in Parkinson’s disease models. Br J Pharmacol 175:3298–3314. https://doi.org/10.1111/bph.14214. (PMID: 10.1111/bph.14214)
Lee E, Hwang I, Park S et al (2019) MPTP-driven NLRP3 inflammasome activation in microglia plays a central role in dopaminergic neurodegeneration. Cell Death Differ 26:213–228. https://doi.org/10.1038/s41418-018-0124-5. (PMID: 10.1038/s41418-018-0124-5)
Liu W, Gao Y, Chang N (2017) Nurr1 overexpression exerts neuroprotective and anti-inflammatory roles via down-regulating CCL2 expression in both in vivo and in vitro Parkinson’s disease models. Biochem Biophys Res Commun 482:1312–1319. https://doi.org/10.1016/j.bbrc.2016.12.034. (PMID: 10.1016/j.bbrc.2016.12.034)
Liu J, Chu S, Zhou X et al (2019) Role of chemokines in Parkinson’s disease. Brain Res Bull 152:11–18. (PMID: 10.1016/j.brainresbull.2019.05.020)
Livak K, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408. https://doi.org/10.1006/METH.2001.1262. (PMID: 10.1006/METH.2001.1262)
Macdonald R, Barnes K, Hastings C, Mortiboys H (2018) Mitochondrial abnormalities in Parkinson’s disease and Alzheimer’s disease: can mitochondria be targeted therapeutically? Biochem Soc Trans 46:891–909. (PMID: 10.1042/BST20170501)
Mao Z, Liu C, Ji S et al (2017) The NLRP3 inflammasome is involved in the pathogenesis of Parkinson’s disease in rats. Neurochem Res 42:1104–1115. https://doi.org/10.1007/s11064-017-2185-0. (PMID: 10.1007/s11064-017-2185-0)
Meléndez C, Muñoz P, Segura-Aguilar J (2019) DT-diaphorase prevents aminochrome-induced lysosome dysfunction in SH-SY5Y cells. Neurotox Res 35:255–259. https://doi.org/10.1007/s12640-018-9953-8. (PMID: 10.1007/s12640-018-9953-8)
Menzies FM, Fleming A, Caricasole A et al (2017) Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron 93:1015–1034. (PMID: 10.1016/j.neuron.2017.01.022)
Muñoz PS, Segura-Aguilar J (2017) DT-diaphorase protects against autophagy induced by aminochrome-dependent alpha-synuclein oligomers. Neurotox Res 32:362–367. https://doi.org/10.1007/s12640-017-9747-4. (PMID: 10.1007/s12640-017-9747-4)
Muñoz P, Cardenas S, Huenchuguala S et al (2015) DT-diaphorase prevents aminochrome-induced alpha-synuclein oligomer formation and neurotoxicity. Toxicol Sci 145:37–47. (PMID: 10.1093/toxsci/kfv016)
Ndam Ngoungoure VL, Muñoz P, Tizabi Y et al (2019) Protective effects of crude plant extracts against aminochrome-induced toxicity in human astrocytoma cells: implications for Parkinson’s disease. NIH Public Access.
Obeso JA, Stamelou M, Goetz CG et al (2017) Past, present, and future of Parkinson’s disease: a special essay on the 200th Anniversary of the Shaking Palsy. Mov Disord 32:1264–1310. (PMID: 10.1002/mds.27115)
Paris I, Perez-Pastene C, Cardenas S et al (2010) Aminochrome induces disruption of actin, alpha-, and beta-tubulin cytoskeleton networks in substantia-nigra-derived cell line. Neurotox Res 18:82–92. https://doi.org/10.1007/s12640-009-9148-4. (PMID: 10.1007/s12640-009-9148-4)
Paris I, Muñoz P, Huenchuguala S et al (2011) Autophagy protects against aminochrome-induced cell death in substantia nigra-derived cell line. Toxicol Sci 121:376–388. https://doi.org/10.1093/toxsci/kfr060. (PMID: 10.1093/toxsci/kfr060)
Paxinos G, Watson C. (2013) The Rat Brain in Stereotaxic Coordinates. Elsevier. 472.
Peterson LJ, Flood PM (2012) Oxidative stress and microglial cells in Parkinson’s disease. Mediat Inflamm.
Poewe W, Seppi K, Tanner CM et al (2017) Parkinson disease. Nat Rev Dis Primers 3:1–21. https://doi.org/10.1038/nrdp.2017.13. (PMID: 10.1038/nrdp.2017.13)
Rocha NP, de Miranda AS, Teixeira AL (2015) Insights into neuroinflammation in Parkinson’s disease: from biomarkers to anti-inflammatory based therapies. BioMed Res Int.
Rodríguez-Chinchilla T, Quiroga-Varela A, Molinet-Dronda F et al (2020) [18F]-DPA-714 PET as a specific in vivo marker of early microglial activation in a rat model of progressive dopaminergic degeneration. Eur J Nucl Med Mol Imaging 47:2602–2612. https://doi.org/10.1007/s00259-020-04772-4. (PMID: 10.1007/s00259-020-04772-4)
Roussakis AA, Piccini P (2018) Molecular imaging of neuroinflammation in idiopathic Parkinson’s disease. In: International review of neurobiology. Academic Press Inc., pp 347–363.
Santos CC, Araújo FM, Ferreira RS et al (2017) Aminochrome induces microglia and astrocyte activation. Toxicol in Vitro 42:54–60. https://doi.org/10.1016/j.tiv.2017.04.004. (PMID: 10.1016/j.tiv.2017.04.004)
Santos CC, Muñoz P, Almeida ÁMAN et al (2020) The flavonoid agathisflavone from poincianella pyramidalis prevents aminochrome neurotoxicity. Neurotox Res 38:579–584. https://doi.org/10.1007/s12640-020-00237-6. (PMID: 10.1007/s12640-020-00237-6)
Sarkar S, Malovic E, Harishchandra DS et al (2017) Mitochondrial impairment in microglia amplifies NLRP3 inflammasome proinflammatory signaling in cell culture and animal models of Parkinson’s disease. Npj Parkinson’s Dis. https://doi.org/10.1038/s41531-017-0032-2. (PMID: 10.1038/s41531-017-0032-2)
Schapira AHV, Chaudhuri KR, Jenner P (2017) Non-motor features of Parkinson disease. Nat Rev Neurosci 18:435–450. (PMID: 10.1038/nrn.2017.62)
Schlachetzki JCM, Marxreiter F, Regensburger M et al (2014) Increased tyrosine hydroxylase expression accompanied by glial changes within the non-lesioned hemisphere in the 6-hydroxydopamine model of Parkinson’s disease. Restor Neurol Neurosci 32:447–462. https://doi.org/10.3233/RNN-130371. (PMID: 10.3233/RNN-130371)
Segura-Aguilar J (2017) On the role of endogenous neurotoxins and neuroprotection in Parkinson’s disease. Neural Regen Res 12:897–901. (PMID: 10.4103/1673-5374.208560)
Segura-Aguilar J, Kostrzewa RM (2015) Neurotoxin mechanisms and processes relevant to Parkinson’s disease: an update. Neurotox Res 27:328–354. https://doi.org/10.1007/s12640-015-9519-y. (PMID: 10.1007/s12640-015-9519-y)
Segura-Aguilar J, Lind C (1989) On the mechanism of the Mn3+-induced neurotoxicity of dopamine: Prevention of quinone-derived oxygen toxicity by DT diaphorase and superoxide dismutase. Chem Biol Interact 72:309–324. https://doi.org/10.1016/0009-2797(89)90006-9. (PMID: 10.1016/0009-2797(89)90006-9)
Souza RB, Frota AF, Sousa RS et al (2017) Neuroprotective effects of sulphated agaran from marine alga gracilaria cornea in rat 6-hydroxydopamine Parkinson’s disease model: behavioural, neurochemical and transcriptional alterations. Basic Clin Pharmacol Toxicol 120:159–170. https://doi.org/10.1111/BCPT.12669. (PMID: 10.1111/BCPT.12669)
Sutterwala FS, Haasken S, Cassel SL (2014) Mechanism of NLRP3 inflammasome activation. Ann N Y Acad Sci 1319:82–95. https://doi.org/10.1111/nyas.12458. (PMID: 10.1111/nyas.12458)
Taetzsch T, Levesque S, Mcgraw C et al (2015) Redox regulation of NF-κB p50 and M1 polarization in microglia. Glia 63:423–440. https://doi.org/10.1002/glia.22762. (PMID: 10.1002/glia.22762)
Tang P, Chong L, Li X et al (2014) Correlation between serum RANTES levels and the severity of Parkinson’s disease. Oxid Med Cell Longev. https://doi.org/10.1155/2014/208408. (PMID: 10.1155/2014/208408)
Vlaar T, Kab S, Schwaab Y et al (2018) Association of Parkinson’s disease with industry sectors: a French nationwide incidence study. Eur J Epidemiol 33:1101–1111. https://doi.org/10.1007/s10654-018-0399-3. (PMID: 10.1007/s10654-018-0399-3)
West M (1999) Stereological methods for estimating the total number of neurons and synapses: issues of precision and bias. Trends Neurosci 22:51–61. https://doi.org/10.1016/S0166-2236(98)01362-9. (PMID: 10.1016/S0166-2236(98)01362-9)
Wolf SA, Boddeke HWGM, Kettenmann H (2017) Microglia in physiology and disease. Annu Rev Physiol 79:619–643. (PMID: 10.1146/annurev-physiol-022516-034406)
Xiong R, Siegel D, Ross D (2014) Quinone-induced protein handling changes: implications for major protein handling systems in quinone-mediated toxicity. Toxicol Appl Pharmacol 280:285–295. https://doi.org/10.1016/j.taap.2014.08.014. (PMID: 10.1016/j.taap.2014.08.014)
Yan X, Liu DF, Zhang XY et al (2017) Vanillin protects dopaminergic neurons against inflammation-mediated cell death by inhibiting ERK1/2, P38 and the NF-κB signaling pathway. Int J Mol Sci 18:389. https://doi.org/10.3390/ijms18020389. (PMID: 10.3390/ijms18020389)
Yan Y, Jiang W, Liu L et al (2015) Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 160:62–73. https://doi.org/10.1016/j.cell.2014.11.047. (PMID: 10.1016/j.cell.2014.11.047)
Yao S, Li L, Sun X et al (2019) FTY720 inhibits MPP+-induced microglial activation by affecting NLRP3 inflammasome activation. J Neuroimmune Pharmacol 14:478–492. https://doi.org/10.1007/s11481-019-09843-4. (PMID: 10.1007/s11481-019-09843-4)
Zafar KS, Siegel D, Ross D (2006) A potential role for cyclized quinones derived from dopamine, DOPA, and 3,4-dihydroxyphenylacetic acid in proteasomal inhibition. Mol Pharmacol 70:1079–1086. https://doi.org/10.1124/mol.106.024703. (PMID: 10.1124/mol.106.024703)
معلومات مُعتمدة: PDSE -47/2017 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; FPU 18/02549 Ministerio de Ciencia, Innovación y Universidades; FIS PI13 01293 Federación Española de Enfermedades de Parkinson; 19540/PI/14 Fundación Séneca; 429127/2018-9 Conselho Nacional de Desenvolvimento Científico e Tecnológico; Research Fellowship Conselho Nacional de Desenvolvimento Científico e Tecnológico
فهرسة مساهمة: Keywords: Aminochrome; Animal model; Dopamine; Neuroinflammation; Parkinson’s disease
المشرفين على المادة: 39984-17-3 (aminochrome 1)
0 (Neuroprotective Agents)
8HW4YBZ748 (Oxidopamine)
VTD58H1Z2X (Dopamine)
0 (Tumor Necrosis Factor-alpha)
0 (NLR Family, Pyrin Domain-Containing 3 Protein)
0 (Anti-Inflammatory Agents)
تواريخ الأحداث: Date Created: 20220106 Date Completed: 20230106 Latest Revision: 20230111
رمز التحديث: 20240628
DOI: 10.1007/s10571-021-01173-5
PMID: 34988761
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-6830
DOI:10.1007/s10571-021-01173-5