دورية أكاديمية

The role of nitric oxide in renovascular hypertension: from the pathophysiology to the treatment.

التفاصيل البيبلوغرافية
العنوان: The role of nitric oxide in renovascular hypertension: from the pathophysiology to the treatment.
المؤلفون: Pereira BP; Departamento de Alimentos E Medicamentos, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil., do Vale GT; Departamento de Ciências Biomédicas E da Saúde, Universidade Do Estado de Minas Gerais (UEMG), Belo Horizonte, Minas Gerais, Brazil., Ceron CS; Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brasil. carla.ceron@ufop.edu.br.
المصدر: Naunyn-Schmiedeberg's archives of pharmacology [Naunyn Schmiedebergs Arch Pharmacol] 2022 Feb; Vol. 395 (2), pp. 121-131. Date of Electronic Publication: 2022 Jan 07.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer Verlag Country of Publication: Germany NLM ID: 0326264 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1912 (Electronic) Linking ISSN: 00281298 NLM ISO Abbreviation: Naunyn Schmiedebergs Arch Pharmacol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin, New York, Springer Verlag.
مواضيع طبية MeSH: Hypertension, Renovascular/*physiopathology , Nitric Oxide/*metabolism , Nitric Oxide Donors/*pharmacology, Angiotensin II/metabolism ; Animals ; Blood Pressure ; Humans ; Hypertension, Renovascular/drug therapy ; Nitric Oxide Synthase Type III/metabolism ; Oxidative Stress/physiology
مستخلص: Renovascular hypertension is one of the most relevant causes of secondary hypertension, mostly caused by atherosclerotic renovascular stenosis or fibromuscular dysplasia. The increase in angiotensin II production, oxidative stress, and formation of peroxynitrite promotes the decrease in nitric oxide (NO) availability and the development of hypertension, renal and endothelial dysfunction, and cardiac and vascular remodeling. The NO produced by nitric oxide synthases (NOS) acts as a vasodilator; however, endothelial NOS uncoupling (eNOS) also contributes to NO reduced availability in renovascular hypertension. NO donors and NO-derived metabolites have been investigated in experimental renovascular hypertension and have shown promissory effects in attenuating blood pressure and organ damage in this condition. Therefore, understanding the role of decreased NO in the pathophysiology of renovascular hypertension promotes the study and development of NO donors and molecules that can be converted into NO (such as nitrate and nitrite), contributing for the treatment of this condition in the future.
(© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Ahmad A, Dempsey SK, Daneva Z, Azam M, Li N, Li PL, Ritter JK (2018) Role of nitric oxide in the cardiovascular  and renal systems. Int J Mol Sci 19: 2605.
Aktan F (2004) iNOS-mediated nitric oxide production and its regulation. Life Sci 75:639–653. (PMID: 1517217410.1016/j.lfs.2003.10.042)
Amaral JH, Rizzi ES, Alves-Lopes R, Pinheiro LC, Tostes RC, Tanus-Santos JE (2019) Antioxidant and antihypertensive responses to oral nitrite involves activation of the Nrf2 pathway. Free Radical Biol Med 141:261–268. (PMID: 10.1016/j.freeradbiomed.2019.06.028)
Araujo AV, Andrade FA, Paulo M, de Paula TD, Potje SR, Pereira AC, Bendhack LM (2019) NO donors induce vascular relaxation by different cellular mechanisms in hypertensive and normotensive rats. Nitric Oxide Biol Chem 86:12–20. (PMID: 10.1016/j.niox.2019.02.004)
Bachmann S, Mundel P (1994) Nitric oxide in the kidney: synthesis, localization, and function. Am J Kidney Dis 24:112–129. (PMID: 751762510.1016/S0272-6386(12)80170-3)
Bauer V, Sotnikova R (2010) Nitric oxide-the endothelium-derived relaxing factor and its role in endothelial functions. Gen Physiol Biophys 29:319–340. (PMID: 2115699510.4149/gpb_2010_04_319)
Bright R (1836) R. Observations on the treatment of fever. Case of simple fever, protracted by irritation of the bowels, and attended by relapse. Guys Hosp Rep 1:1–8.
Buzinari TC, Oishi JC, De Moraes TF, Vatanabe IP, Selistre-de-Araujo HS, Pestana CR, Rodrigues GJ (2017) Treatment with sodium nitroprusside improves the endothelial function in aortic rings with endothelial dysfunction. Eur J Pharm Sci 105:144–149. (PMID: 2845657210.1016/j.ejps.2017.04.022)
Bavishi C, De Leeuw PW, Messerli FH (2016) Atherosclerotic renal artery stenosis and hypertension: pragmatism, pitfalls, and perspectives. Am J Med 129:635.e5-635.e14. https://doi.org/10.1016/j.amjmed.2015.10.010. (PMID: 10.1016/j.amjmed.2015.10.010)
Baylis C (2008) Nitric oxide deficiency in chronic kidney disease. Am J Physiol - Ren Physiol 294:F1–F9. https://doi.org/10.1152/ajprenal.00424.2007. (PMID: 10.1152/ajprenal.00424.2007)
Boutari C, Georgianou E, Sachinidis A et al (2019) Renovascular hypertension: novel insights. Curr Hypertens Rev 16:24–29. https://doi.org/10.2174/1573402115666190416153321. (PMID: 10.2174/1573402115666190416153321)
Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87:840–844. (PMID: 1107387810.1161/01.RES.87.10.840)
Campos RR, Oliveira-Sales EB, Nishi EE, Boim MA, Dolnikoff MS, Bergamaschi CT (2011) The role of oxidative stress in renovascular hypertension. Clin Exp Pharmacol Physiol 38:144–152. (PMID: 2067815310.1111/j.1440-1681.2010.05437.x)
Charles L, Triscott J, Dobbs B (2017) Secondary hypertension: discovering the underlying cause. Am Fam Physician 96:453–461. (PMID: 29094913)
Chatterjee PK, Patel NS, Kvale EO, Cuzzocrea S, Brown PA, Stewart KN, Mota-Filipe H, Thiemermann C (2002) Inhibition of inducible nitric oxide synthase reduces renal ischemia/reperfusion injury. Kidney Int 61:862–871. (PMID: 1184943910.1046/j.1523-1755.2002.00234.x)
Coffman TM (2014) The inextricable role of the kidney in hypertension. J Clin Investig 124:2341–2347. (PMID: 24892708409287710.1172/JCI72274)
Cowley AW Jr, Mori T, Mattson D, Zou AP (2003) Role of renal NO production in the regulation of medullary blood flow. Am J Physiol Regul Integr Comp Physiol 284:R1355-1369. (PMID: 1273616810.1152/ajpregu.00701.2002)
Danser AH, van Kats JP, Admiraal PJ, Derkx FH, Lamers JM, Verdouw PD, Saxena PR, Schalekamp MA (1994) Cardiac renin and angiotensins. Uptake from plasma versus in situ synthesis. Hypertension 24:37–48. (PMID: 802100610.1161/01.HYP.24.1.37)
de Gaitani CM, de Melo MC, Lunardi CN, de S Oliveira F, da Silva RS, Bendhack LM (2009) Hypotensive effect of the nitrosyl ruthenium complex nitric oxide donor in renal hypertensive rats. Nitric Oxide Biol Chem 20:195–199. (PMID: 10.1016/j.niox.2008.12.002)
de Paula TD, Silva BR, Grando MD, Pernomiando Prado LAF, Bendhack LM (2017) Relaxation induced by the nitric oxide donor and cyclooxygenase inhibitor NCX2121 in renal hypertensive rat aortas. Eur J Pharm Sci: Official Journal of the European Federation for Pharmaceutical Sciences 107:45–53. (PMID: 10.1016/j.ejps.2017.06.007)
Dinh QN, Drummond GR, Sobey CG, Chrissobolis S (2014) Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension. Biomed Res Int 2014:1–11. https://doi.org/10.1155/2014/406960. (PMID: 10.1155/2014/406960)
Garovic VD, Textor SC (2005) Renovascular hypertension and ischemic nephropathy. Circulation 112:1362–1374. (PMID: 1612981710.1161/CIRCULATIONAHA.104.492348)
Gava AL, Peotta VA, Cabral AM, Vasquez EC, Meyrelles SS (2008) Overexpression of eNOS prevents the development of renovascular hypertension in mice. Can J Physiol Pharmacol 86:458–464. (PMID: 1864169510.1139/Y08-044)
Gheitasi I, Azizi A, Omidifar N, Doustimotlagh AH (2020) Renoprotective effects of origanum majorana methanolic L and carvacrol on ischemia/reperfusion-induced kidney injury in male rats. Evidence-Based Complement Altern Med 2020:1–9. (PMID: 10.1155/2020/9785932)
Girardi JM, Farias RE, Ferreira AP, Raposo NRB (2011) Rosuvastatin prevents proteinuria and renal inflammation in nitric oxide-deficient rats. Clinics 66:1457–1462. https://doi.org/10.1590/S1807-59322011000800025. (PMID: 10.1590/S1807-59322011000800025219155003161228)
Goldblatt H, Lynch J, Hanzal RF, Summerville WW (1934) Studies on experimental hypertension: I. The production of persistent elevation of systolic blood pressure by means of renal ischemia. J Exp Med 59:347–379. (PMID: 19870251213236010.1084/jem.59.3.347)
Goligorsky MS, Brodsky SV, Noiri E (2002) Nitric oxide in acute renal failure: NOS versus NOS. Kidney Int 61:855–861. (PMID: 1184943810.1046/j.1523-1755.2002.00233.x)
Gottsäter A, Lindblad B (2014) Optimal management of renal artery fibromuscular dysplasia. Ther Clin Risk Manag 10:583–595. https://doi.org/10.2147/TCRM.S48746. (PMID: 10.2147/TCRM.S48746251145364122560)
Guimaraes DA, Rizzi E, Ceron CS, Pinheiro LC, Gerlach RF, Tanus-Santos JE (2013) Atorvastatin and sildenafil lower blood pressure and improve endothelial dysfunction, but only atorvastatin increases vascular stores of nitric oxide in hypertension. Redox Biol 1:578–585. (PMID: 24363994386377210.1016/j.redox.2013.11.004)
Guven A, Uysal B, Akgul O, Cermik H, Gundogdu G, Surer I, Ozturk H, Korkmaz A (2008) Scavenging of peroxynitrite reduces renal ischemia/reperfusion injury. Ren Fail 30:747–754. (PMID: 1870482410.1080/08860220802213039)
Guyton AC, Coleman TG, Cowley AV Jr, Scheel KW, Manning RD Jr, Norman RA Jr (1972) Arterial pressure regulation. Overriding dominance of the kidneys in long-term regulation and in hypertension. Am J Med 52:584–594. (PMID: 433747410.1016/0002-9343(72)90050-2)
Hammoud SH, AlZaim I, Mougharbil N et al (2021) Peri-renal adipose inflammation contributes to renal dysfunction in a non-obese prediabetic rat model: Role of anti-diabetic drugs. Biochem Pharmacol 186:114491. https://doi.org/10.1016/j.bcp.2021.114491. (PMID: 10.1016/j.bcp.2021.11449133647265)
Herrmann SM, Textor SC (2019) Renovascular hypertension. Endocrinol Metab Clin North Am 48:765–778. (PMID: 31655775718432210.1016/j.ecl.2019.08.007)
Higashi Y, Sasaki S, Nakagawa K, Matsuura H, Oshima T, Chayama K (2002) Endothelial function and oxidative stress in renovascular hypertension. N Engl J Med 346:1954–1962. (PMID: 1207505610.1056/NEJMoa013591)
Holterman CE, Read NC, Kennedy CR (2015) Nox and renal disease. Clin Sci 128:465–481. (PMID: 10.1042/CS20140361)
Hsu CN, Tain YL (2019) Regulation of nitric oxide production in the developmental programming of hypertension and kidney disease. Int J Mol Sci 20:681. https://doi.org/10.3390/ijms20030681. (PMID: 10.3390/ijms200306816386843)
Investigators A, Wheatley K, Ives N, Gray R, Kalra PA, Moss JG, Baigent C, Carr S, Chalmers N, Eadington D, Hamilton G, Lipkin G, Nicholson A, Scoble J (2009) Revascularization versus medical therapy for renal-artery stenosis. N Engl J Med 361:1953–1962. (PMID: 10.1056/NEJMoa0905368)
Just A (1997) Nitric oxide and renal autoregulation. Kidney Blood Press Res 20:201–204. (PMID: 929344310.1159/000174145)
Kalaivani P, Saranya RB, Ramakrishnan G et al (2013) Cuminum cyminum, a dietary spice, attenuates hypertension via endothelial nitric oxide synthase and no pathway in renovascular hypertensive rats. Clin Exp Hypertens 35:534–542. https://doi.org/10.3109/10641963.2013.764887. (PMID: 10.3109/10641963.2013.76488723402543)
Konior A, Schramm A, Czesnikiewicz-Guzik M, Guzik TJ (2014) NADPH oxidases in vascular pathology. Antioxid Redox Signal 20:2794–2814. (PMID: 24180474402621810.1089/ars.2013.5607)
Lee J (2008) Nitric oxide in the kidney: its physiological role and pathophysiological implications. Electrolyte Blood Press 6:27–34. (PMID: 24459519389448510.5049/EBP.2008.6.1.27)
Lerman LO, Nath KA, Rodriguez-Porcel M, Krier JD, Schwartz RS, Napoli C, Romero JC (2001) Increased oxidative stress in experimental renovascular hypertension. Hypertension 37:541–546. (PMID: 1123033210.1161/01.HYP.37.2.541)
Ling WC, Mustafa MR, Murugan DD (2020) Therapeutic implications of nitrite in hypertension. J Cardiovasc Pharmacol 75:123–134. (PMID: 3165167310.1097/FJC.0000000000000771)
Ling WC, Mustafa MR, Vanhoutte PM, Murugan DD (2018) Chronic administration of sodium nitrite prevents hypertension and protects arterial endothelial function by reducing oxidative stress in angiotensin II-infused mice. Vascul Pharmacol 102:11–20. (PMID: 2855274610.1016/j.vph.2017.05.003)
Lunardi CN, da Silva RS, Bendhack LM (2009) New nitric oxide donors based on ruthenium complexes. Braz J Med Biol Res 42:87–93. (PMID: 1921930110.1590/S0100-879X2009000100013)
Lundberg JO, Weitzberg E, Gladwin MT (2008) The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov 7:156–167. https://doi.org/10.1038/nrd2466. (PMID: 10.1038/nrd246618167491)
Majid DS, Navar LG (2001) Nitric oxide in the control of renal hemodynamics and excretory function. Am J Hypertens 14:74S-82S. (PMID: 1141176910.1016/S0895-7061(01)02073-8)
Martinez Y, Martinez S, Meaney A, Meaney E, Escalante B (2002) Angiotensin II type 1 receptor blockade restores nitric oxide-dependent renal vascular responses in renovascular hypertension. J Cardiovasc Pharmacol 40:381–387. (PMID: 1219832410.1097/00005344-200209000-00007)
Mendes-Junior L, Guimaraes DD, Gadelha DD, Diniz TF, Brandao MC, Athayde-Filho PF, Lemos VS, Franca-Silva Mdo S, Braga VA (2015) The new nitric oxide donor cyclohexane nitrate induces vasorelaxation, hypotension, and antihypertensive effects via NO/cGMP/PKG pathway. Front Physiol 6:243. (PMID: 26379557455390010.3389/fphys.2015.00243)
Mirabito Colafella KM, Bovee DM, Danser AHJ (2019) The renin-angiotensin-aldosterone system and its therapeutic targets. Exp Eye Res 186:107680. (PMID: 3112925210.1016/j.exer.2019.05.020)
Mount PF, Power DA (2006) Nitric oxide in the kidney: functions and regulation of synthesis. Acta Physiol 187:433–446. (PMID: 10.1111/j.1748-1716.2006.01582.x)
Munoz M, Lopez-Oliva ME, Rodriguez C, Martinez MP, Saenz-Medina J, Sanchez A, Climent B, Benedito S, Garcia-Sacristan A, Rivera L, Hernandez M, Prieto D (2020) Differential contribution of Nox1, Nox2 and Nox4 to kidney vascular oxidative stress and endothelial dysfunction in obesity. Redox Biol 28:101330. (PMID: 3156308510.1016/j.redox.2019.101330)
Nair R, Vaqar S (2021) Renovascular hypertension. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing.
Nakamoto H, Ferrario CM, Fuller SB, Robaczewski DL, Winicov E, Dean RH (1995) Angiotensin-(1–7) and nitric oxide interaction in renovascular hypertension. Hypertension 25:796–802. (PMID: 753671510.1161/01.HYP.25.4.796)
Noiri E, Nakao A, Uchida K, Tsukahara H, Ohno M, Fujita T, Brodsky S, Goligorsky MS (2001) Oxidative and nitrosative stress in acute renal ischemia. Am J Physiol Renal Physiol 281:F948-957. (PMID: 1159295210.1152/ajprenal.2001.281.5.F948)
Oishi JC, Buzinnari TC, Pestana CR, De Moraes TF, Vatanabe IP, Wink DA Jr, da Silva RS, Bendhack LM, Rodrigues GJ (2015) In vitro Treatment with cis-[Ru(H-dcbpy-)2(Cl)(NO)] improves the endothelial function in aortic rings with endothelial dysfunction. J Pharm Pharm Sci 18:696–704. (PMID: 26670366833589910.18433/J3CC9K)
Oliveira-Sales EB, Dugaich AP, Carillo BA, Abreu NP, Boim MA, Martins PJ, D’Almeida V, Dolnikoff MS, Bergamaschi CT, Campos RR (2008) Oxidative stress contributes to renovascular hypertension. Am J Hypertens 21:98–104. (PMID: 1809175110.1038/ajh.2007.12)
Ollerstam A, Pittner J, Persson AE, Thorup C (1997) Increased blood pressure in rats after long-term inhibition of the neuronal isoform of nitric oxide synthase. J Clin Investig 99:2212–2218. (PMID: 915179350805110.1172/JCI119394)
Park Y-W, Park Y-H, Kim S-W, Lee J-U (2000) Increased expression of nitric oxide synthase coincides with reversal of renovascular hypertension. Korean J Physiol Pharmacol 4:143–147.
Patzak A, Persson AE (2007) Angiotensin II-nitric oxide interaction in the kidney. Curr Opin Nephrol Hypertens 16:46–51. (PMID: 1714307110.1097/MNH.0b013e328011a89b)
Paulo M, Araujo AV, Bendhack LM (2013) Sodium nitroprusside activates potassium channels in the vena cava in normotensive but not in hypertensive rats. Hypertens Res 36:765–769. https://doi.org/10.1038/hr.2013.49. (PMID: 10.1038/hr.2013.4923784507)
Pereira AC, Araujo AV, Paulo M, Andrade FA, Silva BR, Vercesi JA, da Silva RS, Bendhack LM (2017) Hypotensive effect and vascular relaxation in different arteries induced by the nitric oxide donor RuBPY. Nitric Oxide Biol Chem 62:11–16. (PMID: 10.1016/j.niox.2016.11.001)
Pereira TM, Balarini CM, Silva IV, Cabral AM, Vasquez EC, Meyrelles SS (2009) Endogenous angiotensin II modulates nNOS expression in renovascular hypertension. Braz J Med Biol Res 42:685–691. (PMID: 1957864910.1590/S0100-879X2009000700014)
Pinheiro LC, Amaral JH, Ferreira GC, Portella RL, Ceron CS, Montenegro MF, Toledo JC Jr, Tanus-Santos JE (2015) Gastric S-nitrosothiol formation drives the antihypertensive effects of oral sodium nitrite and nitrate in a rat model of renovascular hypertension. Free Radical Biol Med 87:252–262. (PMID: 10.1016/j.freeradbiomed.2015.06.038)
Pinheiro LC, Ferreira GC, Amaral JH, Portella RL, Tella SOC, Passos MA, Tanus-Santos JE (2016) Oral nitrite circumvents antiseptic mouthwash-induced disruption of enterosalivary circuit of nitrate and promotes nitrosation and blood pressure lowering effect. Free Radical Biol Med 101:226–235. (PMID: 10.1016/j.freeradbiomed.2016.10.013)
Prasanna N, Dissanayake HA, Constantine GR (2018) Sublingual nitroglycerin for early blood pressure control in hypertensive emergencies: observations from an emergency department clinical audit in Sri Lanka. BMC Res Notes 11:10–12. https://doi.org/10.1186/s13104-018-3460-0. (PMID: 10.1186/s13104-018-3460-0)
Ralapanawa DMPUK, Jayawickreme KP, Ekanayake EMM (2016) A case of treatable hypertension: fibromuscular dysplasia of renal arteries Case Reports. BMC Res Notes 9:10–13. https://doi.org/10.1186/s13104-015-1835-z. (PMID: 10.1186/s13104-015-1835-z)
Ravarotto V, Simioni F, Pagnin E et al (2018) Oxidative stress – chronic kidney disease – cardiovascular disease: A vicious circle. Life Sci 210:125–131. https://doi.org/10.1016/j.lfs.2018.08.067. (PMID: 10.1016/j.lfs.2018.08.06730172705)
Rizzi E, Amaral JH, Guimaraes DA, Conde-Tella SO, Pinheiro LC, Gerlach RF, Castro MM, Tanus-Santos JE (2019) Nitrite treatment downregulates vascular MMP-2 activity and inhibits vascular remodeling in hypertension independently of its antihypertensive effects. Free Radical Biol Med 130:234–243. (PMID: 10.1016/j.freeradbiomed.2018.11.002)
Rodino-Janeiro BK, Paradela-Dobarro B, Castineiras-Landeira MI, Raposeiras-Roubin S, Gonzalez-Juanatey JR, Alvarez E (2013) Current status of NADPH oxidase research in cardiovascular pharmacology. Vasc Health Risk Manag 9:401–428. (PMID: 239834733750863)
Rodrigues GJ, Pereira AC, Vercesi JA, Lima RG, Silva RS, Bendhack LM (2012) Long-lasting hypotensive effect in renal hypertensive rats induced by nitric oxide released from a ruthenium complex. J Cardiovasc Pharmacol 60:193–198. (PMID: 2263507310.1097/FJC.0b013e31825bacc4)
Rossi GP, Bisogni V, Rossitto G, Maiolino G, Cesari M, Zhu R, Seccia TM (2020) Practice Recommendations for Diagnosis and Treatment of the Most Common Forms of Secondary Hypertension. High Blood Press Cardiovas Prev 27:547–560. (PMID: 10.1007/s40292-020-00415-9)
Samadian F, Dalili N, Jamalian A (2017) New insights into pathophysiology, diagnosis, and treatment of renovascular hypertension. Iran J Kidney Dis 11:79–89. (PMID: 28270639)
Sanchez-Mendoza A, Hong E, Escalante B (1998) The role of nitric oxide in angiotensin II-induced renal vasoconstriction in renovascular hypertension. J Hypertens 16:697–703. (PMID: 979718210.1097/00004872-199816050-00018)
Tafur-Soto JD, White CJ (2015) Renal artery stenosis. Cardiol Clin 33:59–73. (PMID: 2543933110.1016/j.ccl.2014.09.006)
Textor SC (2009) Current approaches to renovascular hypertension. The Medical clinics of North America 93: 717–732, Table of Contents.
Textor SC (2014) Secondary hypertension: renovascular hypertension. J Am Soc Hypertens 8:943–945. (PMID: 2549283910.1016/j.jash.2014.10.007)
Textor SC (2020) Management of renovascular hypertension. Curr Opin Cardiol 35:627–635. https://doi.org/10.1097/HCO.0000000000000790. (PMID: 10.1097/HCO.000000000000079032852347)
Touyz RM (2004) Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance? Hypertension 44:248–252. (PMID: 1526290310.1161/01.HYP.0000138070.47616.9d)
Van Beusecum J, Inscho EW (2015) Regulation of renal function and blood pressure control by P2 purinoceptors in the kidney. Curr Opin Pharmacol 21:82–88. (PMID: 25616035551522510.1016/j.coph.2015.01.003)
Wadei HM, Textor SC (2012) The role of the kidney in regulating arterial blood pressure. Nat Rev Nephrol 8:602–609. (PMID: 2292624610.1038/nrneph.2012.191)
Wassmann S, Wassmann K, Nickenig G (2004) Modulation of oxidant and antioxidant enzyme expression and function in vascular cells. Hypertension 44:381–386. (PMID: 1533773410.1161/01.HYP.0000142232.29764.a7)
فهرسة مساهمة: Keywords: NO donors; Nitric oxide; Renin-angiotensin system; Renovascular hypertension
المشرفين على المادة: 0 (Nitric Oxide Donors)
11128-99-7 (Angiotensin II)
31C4KY9ESH (Nitric Oxide)
EC 1.14.13.39 (NOS3 protein, human)
EC 1.14.13.39 (Nitric Oxide Synthase Type III)
تواريخ الأحداث: Date Created: 20220107 Date Completed: 20220303 Latest Revision: 20240206
رمز التحديث: 20240206
DOI: 10.1007/s00210-021-02186-z
PMID: 34994823
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-1912
DOI:10.1007/s00210-021-02186-z