دورية أكاديمية

Theoretical and X-Ray Evidence of Electrostatic Phosphonium anti and gauche Effects.

التفاصيل البيبلوغرافية
العنوان: Theoretical and X-Ray Evidence of Electrostatic Phosphonium anti and gauche Effects.
المؤلفون: Martins FA; Department of Chemistry, Institute of Natural Sciences, Federal University of Lavras, MG, 37200-900, Lavras, Brazil., Chagas P; Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, MG, 31270-901, Belo Horizonte, Brazil., Thomasi SS; Department of Chemistry, Institute of Natural Sciences, Federal University of Lavras, MG, 37200-900, Lavras, Brazil., Oliveira LCA; Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, MG, 31270-901, Belo Horizonte, Brazil., Diniz R; Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, MG, 31270-901, Belo Horizonte, Brazil., Freitas MP; Department of Chemistry, Institute of Natural Sciences, Federal University of Lavras, MG, 37200-900, Lavras, Brazil.
المصدر: Chemphyschem : a European journal of chemical physics and physical chemistry [Chemphyschem] 2022 Mar 04; Vol. 23 (5), pp. e202100856. Date of Electronic Publication: 2022 Jan 21.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Verlag Country of Publication: Germany NLM ID: 100954211 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1439-7641 (Electronic) Linking ISSN: 14394235 NLM ISO Abbreviation: Chemphyschem Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Weinheim, Germany : Wiley-VCH Verlag, c2000-
مواضيع طبية MeSH: Fluorine*/chemistry, Hydrogen Bonding ; Molecular Conformation ; Static Electricity ; X-Rays
مستخلص: Sulphur, not phosphorus, is the only known third-row element capable of experiencing an electrostatic gauche effect with fluorine. Some six-membered rings containing an endocyclic phosphorus atom and a β-fluorine substituent that can interconvert to axial (gauche relative to phosphorus) and equatorial positions were then analysed. While phosphines do not establish an electrostatic attraction between fluorine and phosphorus, some oxidised forms exhibit surprising stability for the sterically disfavoured axial orientation. Because the nature of this behaviour was not obvious, since an intramolecular hydrogen bond can appear, a phosphonium derivative was further studied and its axial conformation was found to be highly stable. A preference for the gauche arrangement appears even for the acyclic and sterically hindered (2-fluoroethyl)triphenylphosphonium cation. On the other hand, (ethane-1,2-diyl)bis(phosphonium) cations are exclusively in anti conformation due to an (+/+)-electrostatic repulsion between the positively charged phosphonium groups.
(© 2022 Wiley-VCH GmbH.)
References: S. Wolfe, Acc. Chem. Res. 1972, 5, 102-111.
L. Goodman, H. Gu, V. Pophristic, J. Phys. Chem. A 2005, 109, 1223-1229.
I. V. Alabugin, G. P. Gomes, M. A. Abdo, WIREs Comput. Mol. Sci. 2019, 9, e1389.
D. R. Silva, L. A. Santos, T. A. Hamlin, C. F. Guerra, M. P. Freitas, M. F. Bickelhaupt, ChemPhysChem 2021, 22, 641-648.
R. A. Cormanich, D. O'Hagan, M. Bühl, Angew. Chem. Int. Ed. 2017, 56, 7867-7870;.
Angew. Chem. 2017, 129, 7975-7978.
H. .-J. Böhm, D. Banner, S. Bendels, M. Kansy, B. Kuhn, K. Müller, U. Obst-Sander, M. Stahl, ChemBioChem. 2004, 5, 637-643.
G. Theodoridis, in: Fluorine and the Environment: Agrochemicals, Archaelogy, Green Chemistry and Water (Ed.: A. Tressaud), Elsevier, Amsterdam, 2006, pp. 121-175.
D. O'Hagan, J. Fluorine Chem. 2010, 131, 1071-1081.
T. Fujiwara, D. O'Hagan, J. Fluorine Chem. 2014, 167, 16-29.
D. Y. Buissonneaud, T. van Mourik, D. O'Hagan, Tetrahedron 2010, 66, 2196-2202.
N. E. J. Gooseman, D. O'Hagan, M. J. G. Peach, A. M. Z. Slawin, D. J. Tozer, R. J. Young, Angew. Chem. Int. Ed. 2007, 46, 5904-5908;.
Angew. Chem. 2007, 119, 6008-6012.
D. O'Hagan, J. Org. Chem. 2012, 77, 3689-3699.
A. Sun, D. C. Lankin, K. Hardcastle, J. P. Snyder, Chem. Eur. J. 2005, 11, 1579-1591.
C. R. S. Briggs, M. J. Allen, D. O'Hagan, D. J. Tozer, A. M. Z. Slawin, A. E. Goeta, J. A. K. Howard, Org. Biomol. Chem. 2004, 2, 732-740.
J. M. Silla, W. G. D. P. Silva, R. A. Cormanich, R. Rittner, C. F. Tormena, M. P. Freitas, J. Phys. Chem. A 2014, 118, 503-507.
J. M. Silla, C. J. Duarte, R. A. Cormanich, R. Rittner, M. P. Freitas, Beilstein J. Org. Chem. 2014, 10, 877-882.
J. Cao, R. Bjornsson, M. Bühl, W. Thiel, T. van Mourik, Chem. Eur. J. 2012, 18, 184-195.
P. W. Chia, M. R. Livesey, A. M. Z. Slawin, T. van Mourik, D. J. A. Wyllie, D. O'Hagan, Chem. Eur. J. 2012, 18, 8813-8819.
J. Aleksić, M. Stojanovic, M. Baranac-Stojanovic, J. Org. Chem. 2015, 80, 10197-10207.
C. Thiehoff, M. C. Holland, C. G. Daniliuc, K. N. Houk, R. Gilmour, Chem. Sci. 2015, 6, 3565-3571.
C. Thiehoff, L. Schifferer, C. G. Daniliuc, N. Santschi, R. Gilmour, J. Fluorine Chem. 2016, 182, 121-126.
C. Thiehoff, Y. P. Rey, R. Gilmour, Isr. J. Chem. 2017, 57, 92-100.
N. Santschi, C. Thiehoff, M. C. Holland, C. G. Daniliuc, K. N. Houk, R. Gilmour, Organometallics 2016, 35, 3040-3044.
L. A. F. Andrade, M. P. Freitas, New J. Chem. 2017, 41, 11672-11678.
A. C. Vetter, K. Nikitin, D. G. Gilheany, Chem. Commun. 2018, 54, 5843-5846.
B. Yuan, W. Hu, S. Lv, J. Huang, K. Huang, Chem. J. Mold. 2017, 12, 81-86.
A. V. Belyakov, A. A. Baskakov, A. D. Ivanov, A. V. Garabadzhiu, I. Arnason, Struct. Chem. 2013, 24, 763-768.
Y. P. Rey, L. E. Zimmer, C. Sparr, E.-M. Tanzer, W. B. Schweizer, H. M. Senn, S. Lakhdar, R. Gilmour, Eur. J. Org. Chem. 2014, 6, 1202-1211.
S. Paul, W. B. Schweizer, G. Rugg, H. M. Senn, R. Gilmour, Tetrahedron 2013, 69, 5647-5659.
C. Sparr, W. B. Schweizer, H. M. Senn, R. Gilmour, Angew. Chem. 2009, 121, 3111;.
Angew. Chem. Int. Ed. 2009, 48, 3065.
J. Hernadéz-Trujillo, F. Cortés-Guzmán, G. Cuevas, in: The Quantum Theory of Atoms and Molecules: From Solid State to DNA and Drug Design (Eds.: C. F. Matta, R. J. Boyd), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007, pp. 375-397.
G. Cuevas, J. Am. Chem. Soc. 2000, 122, 692-698.
U. Koch, P. L. A. Popelier, J. Phys. Chem. 1995, 99, 9747-9754.
S. Liu, N. Govind, J. Phys. Chem. A 2008, 112, 6690-6699.
R. A. Cormanich, M. P. Freitas, J. Org. Chem. 2009, 74, 8384-8387.
Y. Mo, J. Org. Chem. 2010, 75, 2733-2736.
D. R. Silva, L. A. Santos, T. A. Hamlin, F. M. Bickelhaupt, M. P. Freitas, C. F. Guerra, Phys. Chem. Chem. Phys. 2021, in press, DOI: 10.1039/D1CP02502C.
Y.-Y. Carpenter, C. A. Dyker, N. Burford, M. D. Lumsden, A. Decken, J. Am. Chem. Soc. 2008, 130, 15732-15741.
L.-J. Xu, X. Lin, Q. He, M. Worku, B. Ma, Nat. Commun. 2020, 11, 4329.
E. D. Glendening, J. Phys. Chem. A 2005, 109, 11936-11940.
M. J. Frisch, M. Head-Gordon, J. A. Pople, Chem. Phys. Lett. 1990, 166, 275-280.
M. J. Frisch, J. A. Pople, J. S. Binkley, J. Chem. Phys. 1984, 80, 3265-3269.
J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999-3094.
A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104-154123.
S. Grimme, S. Ehrlich, L. Goerigk, J. Comb. Chem. 2011, 32, 1456-1465.
M. W. Wong, Chem. Phys. Lett. 1996, 256, 391-399.
M. J. Frisch, G. W. Trucks, J. R. Cheeseman, Comput. Theor. Chem. 1996, 4, 679-707.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2016.
E. D. Glendening, J, K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, P. Karafiloglou, C. R. Landis, F. Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison, 2018.
R. F. W. Bader, in: Encyclopedia of Computational Chemistry (Ed.: P. v. R. Schleyer), John Wiley and Sons, Chichester, 1998, pp. 64-86.
AIMAll (Version 19.02.13), T. A. Keith, TK Gristmill Software, Overland Park KS, USA, 2019 (aim.tkgristmill.com).
معلومات مُعتمدة: CEX-APQ-00383/15 Fundação de Amparo à Pesquisa do Estado de Minas Gerais; 001 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
فهرسة مساهمة: Keywords: anti effect; conformational analysis; electrostatic interactions; gauche effect; organophosphorus compounds
المشرفين على المادة: 284SYP0193 (Fluorine)
تواريخ الأحداث: Date Created: 20220107 Date Completed: 20220316 Latest Revision: 20220316
رمز التحديث: 20221213
DOI: 10.1002/cphc.202100856
PMID: 34995018
قاعدة البيانات: MEDLINE
الوصف
تدمد:1439-7641
DOI:10.1002/cphc.202100856