دورية أكاديمية

A GATA4-regulated secretory program suppresses tumors through recruitment of cytotoxic CD8 T cells.

التفاصيل البيبلوغرافية
العنوان: A GATA4-regulated secretory program suppresses tumors through recruitment of cytotoxic CD8 T cells.
المؤلفون: Patel RS; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.; Department of Genetics, Harvard Medical School, Boston, MA, USA.; Howard Hughes Medical Institute, Chevy Chase, MD, USA.; Scripps Green Hospital, San Diego, CA, USA., Romero R; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Watson EV; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.; Department of Genetics, Harvard Medical School, Boston, MA, USA.; Howard Hughes Medical Institute, Chevy Chase, MD, USA., Liang AC; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.; Department of Genetics, Harvard Medical School, Boston, MA, USA.; Howard Hughes Medical Institute, Chevy Chase, MD, USA., Burger M; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA., Westcott PMK; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA., Mercer KL; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA., Bronson RT; Harvard Medical School, Boston, MA, USA., Wooten EC; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.; Department of Genetics, Harvard Medical School, Boston, MA, USA.; Howard Hughes Medical Institute, Chevy Chase, MD, USA., Bhutkar A; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA., Jacks T; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA., Elledge SJ; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA. selledge@genetics.med.harvard.edu.; Department of Genetics, Harvard Medical School, Boston, MA, USA. selledge@genetics.med.harvard.edu.; Howard Hughes Medical Institute, Chevy Chase, MD, USA. selledge@genetics.med.harvard.edu.
المصدر: Nature communications [Nat Commun] 2022 Jan 11; Vol. 13 (1), pp. 256. Date of Electronic Publication: 2022 Jan 11.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: Biological Transport/*physiology , GATA4 Transcription Factor/*metabolism , Neoplasms/*metabolism , T-Lymphocytes, Cytotoxic/*metabolism, Animals ; Antibodies, Monoclonal, Humanized ; Chemokine CCL2/metabolism ; GATA4 Transcription Factor/genetics ; Gene Expression Regulation, Neoplastic ; Homeodomain Proteins ; Humans ; Immune Evasion ; Lung/pathology ; Melanoma ; Mice ; Mice, Inbred C57BL ; Myocytes, Cardiac/metabolism ; Neoplasms/immunology ; Neoplasms/pathology ; Transcriptome
مستخلص: The GATA4 transcription factor acts as a master regulator of development of multiple tissues. GATA4 also acts in a distinct capacity to control a stress-inducible pro-inflammatory secretory program that is associated with senescence, a potent tumor suppression mechanism, but also operates in non-senescent contexts such as tumorigenesis. This secretory pathway is composed of chemokines, cytokines, growth factors, and proteases. Since GATA4 is deleted or epigenetically silenced in cancer, here we examine the role of GATA4 in tumorigenesis in mouse models through both loss-of-function and overexpression experiments. We find that GATA4 promotes non-cell autonomous tumor suppression in multiple model systems. Mechanistically, we show that Gata4-dependent tumor suppression requires cytotoxic CD8 T cells and partially requires the secreted chemokine CCL2. Analysis of transcriptome data in human tumors reveals reduced lymphocyte infiltration in GATA4-deficient tumors, consistent with our murine data. Notably, activation of the GATA4-dependent secretory program combined with an anti-PD-1 antibody robustly abrogates tumor growth in vivo.
(© 2022. The Author(s).)
References: Gasser, S., Orsulic, S., Brown, E. J. & Raulet, D. H. NIH public access. Nature 436, 1186–1190 (2006). (PMID: 10.1038/nature03884)
Soriani, A. et al. ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood 113, 3503–3511 (2009). (PMID: 1909827110.1182/blood-2008-08-173914)
Sharpless, N. E. & Sherr, C. J. Forging a signature of in vivo senescence. Nat. Rev. Cancer 15, 397–408 (2015). (PMID: 2610553710.1038/nrc3960)
Kuilman, T., Michaloglou, C., Mooi, W. J. & Peeper, D. S. The essence of senescence. Genes Dev. 24, 2463–2479 (2010). (PMID: 21078816297592310.1101/gad.1971610)
Baker, D. J. et al. Naturally occurring p16 Ink4a-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016). (PMID: 26840489484510110.1038/nature16932)
Adams, P. D. Healing and hurting: molecular mechanisms, functions, and pathologies of cellular senescence. Mol. Cell 36, 2–14 (2009). (PMID: 1981870510.1016/j.molcel.2009.09.021)
Demaria, M. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722–733 (2014). (PMID: 25499914434962910.1016/j.devcel.2014.11.012)
Campisi, J. et al. From discoveries in ageing research to therapeutics for healthy ageing. Nature 571, 183–192 (2019). (PMID: 31292558720518310.1038/s41586-019-1365-2)
Childs, B. G., Baker, D. J., Kirkland, J. L., Campisi, J. & van Deursen, J. M. Senescence and apoptosis: dueling or complementary cell fates? EMBO Rep. 15, 1139–1153 (2014). (PMID: 25312810425348810.15252/embr.201439245)
Baker, D. J. et al. Clearance of p16 Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011). (PMID: 22048312346832310.1038/nature10600)
Baar, M. P. et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169, 132–147.e16 (2017). (PMID: 28340339555618210.1016/j.cell.2017.02.031)
Bussian, T. J. et al. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562, 578–582 (2018). (PMID: 30232451620650710.1038/s41586-018-0543-y)
Whittemore, K., Vera, E., Martínez-Nevado, E., Sanpera, C. & Blasco, M. A. Telomere shortening rate predicts species life span. Proc. Natl Acad. Sci. USA 116, 15122–15127 (2019). (PMID: 31285335666076110.1073/pnas.1902452116)
Vera, E., Bernardes de Jesus, B., Foronda, M., Flores, J. M. & Blasco, M. A. The rate of increase of short telomeres predicts longevity in mammals. Cell Rep. 2, 732–737 (2012). (PMID: 2302248310.1016/j.celrep.2012.08.023)
Muñoz-Lorente, M. A., Cano-Martin, A. C. & Blasco, M. A. Mice with hyper-long telomeres show less metabolic aging and longer lifespans. Nat. Commun. 10, 4723 (2019). (PMID: 31624261679776210.1038/s41467-019-12664-x)
Viger, R. S., Guittot, S. M., Anttonen, M., Wilson, D. B. & Heikinheimo, M. Role of the GATA family of transcription factors in endocrine development, function, and disease. Mol. Endocrinol. 22, 781–798 (2008). (PMID: 18174356227646610.1210/me.2007-0513)
Kang, C. et al. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science 349, aaa5612 (2015).
Wang, L. et al. High-throughput functional genetic and compound screens identify targets for senescence induction in cancer. Cell Rep. 21, 773–783 (2017). (PMID: 2904584310.1016/j.celrep.2017.09.085)
Coppé, J. P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853–2868 (2008).
Coppé, J. P. et al. A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen. PLoS ONE 5, e9188 (2010).
Mazzucco, A. E. et al. Genetic interrogation of replicative senescence uncovers a dual role for USP28 in coordinating the p53 and GATA4 branches of the senescence program. Genes Dev. 31, 1933–1938 (2017). (PMID: 29089421571013910.1101/gad.304857.117)
Zhang, D., Zaugg, K., Mak, T. W. & Elledge, S. J. A role for the deubiquitinating enzyme USP28 in control of the DNA-damage response. Cell 12, 529–542 (2006). (PMID: 10.1016/j.cell.2006.06.039)
Matsuoka, S. et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160–1166 (2007). (PMID: 1752533210.1126/science.1140321)
Akiyama, Y. et al. S. B. GATA-4 and GATA-5 transcription factor genes and potential downstream antitumor target genes are epigenetically silenced in colorectal and gastric cancer. Mol. Cell. Biol. 23, 8429–8439 (2003). (PMID: 1461238926268410.1128/MCB.23.23.8429-8439.2003)
Chmelarova, M. et al. Importance of promoter methylation of GATA4 and TP53 genes in endometrioid carcinoma of endometrium. Clin. Chem. Lab. Med. 52, 1229–1234 (2014). (PMID: 2465102110.1515/cclm-2013-0162)
Vaitkiene, P., Skiriute, D., Skauminas, K. & Tamašauskas, A. GATA4 and DcR1 methylation in glioblastomas. Diagn. Pathol. 8, 6–10 (2013). (PMID: 10.1186/1746-1596-8-7)
Chmelarova, M., Dvorakova, E., Spacek, J., Lacoc, J. & Palicka, V. Importance of promoter methylation of GATA4 gene in epithelial ovarian cancer. Biomed. Pap. 157, 294–297 (2013). (PMID: 10.5507/bp.2013.079)
Hellebrekers, D. M. E. I. et al. GATA4 and GATA5 are potential tumor suppressors and biomarkers in colorectal cancer. Clin. Cancer Res. 15, 3990–3997 (2009). (PMID: 1950915210.1158/1078-0432.CCR-09-0055)
Han, X., Tang, J., Chen, T. & Ren, G. Restoration of GATA4 expression impedes breast cancer progression by transcriptional repression of ReLA and inhibition of NF-κB signaling. J. Cell. Biochem. 120, 917–927 (2019). (PMID: 3018794910.1002/jcb.27455)
Gao, L. et al. Lung cancer deficient in the tumor suppressor GATA4 is sensitive to TGFBR1 inhibition. Nat. Commun. 10, 1–15 (2019). (PMID: 10.1038/s41467-019-09295-7)
Enane, F. O. et al. GATA4 loss of function in liver cancer impedes precursor to hepatocyte transition. J. Clin. Invest. 127, 3527–3542 (2017). (PMID: 28758902566957810.1172/JCI93488)
Wiley, C. D. et al. Small-molecule MDM2 antagonists attenuate the senescence-associated secretory phenotype. Sci. Rep. 8, 2–10 (2018). (PMID: 10.1038/s41598-018-20000-4)
Sanchez-Rivera, F. J. et al. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature 516, 428–431 (2014). (PMID: 25337879429287110.1038/nature13906)
DuPage, M., Dooley, A. L. & Jacks, T. Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat. Protoc. 4, 1064–1072 (2009). (PMID: 19561589275726510.1038/nprot.2009.95)
Platt, R. J. et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014). (PMID: 25263330426547510.1016/j.cell.2014.09.014)
Tammela, T. et al. A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma. Nature 545, 355–359 (2017). (PMID: 28489818590367810.1038/nature22334)
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. J. Electr. Syst. 102, 15545–15550 (2005).
Guo, M. et al. Hypermethylation of the GATA genes in lung cancer. Clin. Cancer Res. 10, 7917–7924 (2004). (PMID: 1558562510.1158/1078-0432.CCR-04-1140)
Juneja, V. R. et al. PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J. Exp. Med. 214, 895–904 (2017). (PMID: 28302645537997010.1084/jem.20160801)
Goel, S. et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature 548, 471–475 (2017). (PMID: 28813415557066710.1038/nature23465)
Dimitrova, N. et al. Stromal expression of miR-143/145 promotes neoangiogenesis in lung cancer development. Cancer Discov. 6, 188–201 (2016). (PMID: 2658676610.1158/2159-8290.CD-15-0854)
Salgado, N. R. et al. NK cell–mediated cytotoxicity contributes to tumor control by a cytostatic drug combination. Science 362, 1416–1422 (2018). (PMID: 30573629671117210.1126/science.aas9090)
Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007). (PMID: 17251933460109710.1038/nature05529)
Lujambio, A. et al. Non-cell-autonomous tumor suppression by p53. Cell 153, 449–460 (2013). (PMID: 23562644370203410.1016/j.cell.2013.03.020)
Miller, B. C. et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019). (PMID: 30778252667365010.1038/s41590-019-0312-6)
Gasser, S., Orsulic, S., Brown, E. J. & Raulet, D. H. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436, 1186–1190 (2005). (PMID: 15995699135216810.1038/nature03884)
Qin, Y., Feng, H., Chen, M., Wu, H. & Zheng, X. InfiniumPurify: An R package for estimating and accounting for tumor purity in cancer methylation research. Genes Dis. 5, 43–45 (2018). (PMID: 30258934614708110.1016/j.gendis.2018.02.003)
Zheng, X., Zhang, N., Wu, H. J. & Wu, H. Estimating and accounting for tumor purity in the analysis of DNA methylation data from cancer studies. Genome Biol. 18, 1–14 (2017). (PMID: 10.1186/s13059-016-1143-5)
McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297 (2012). (PMID: 22287627337888210.1093/nar/gks042)
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2009). (PMID: 19910308279681810.1093/bioinformatics/btp616)
Newman, S. Interactive analysis of large cancer copy number studies with Copy Number Explorer. Bioinformatics 31, 2874–2876 (2015). (PMID: 25957352454761910.1093/bioinformatics/btv298)
Davoli, T., Uno, H., Wooten, E. C. & Elledge, S. J. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 355, eaaf8399 (2017).
Abouelhoda, M. I., Kurtz, S. & Ohlebusch, E. Replacing suffix trees with enhanced suffix arrays. J. Discret. Algorithms 2, 53–86 (2004). (PMID: 10.1016/S1570-8667(03)00065-0)
Smith, T. F. & Waterman, M. S. Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197 (1981). (PMID: 726523810.1016/0022-2836(81)90087-5)
Wang, K., Li, M. & Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, 1–7 (2010). (PMID: 10.1093/nar/gkq603)
Döring, A., Weese, D., Rausch, T. & Reinert, K. SeqAn an efficient, generic C++ library for sequence analysis. BMC Bioinformatics 9, 1–9 (2008). (PMID: 10.1186/1471-2105-9-11)
Thorvaldsdóttir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration. Brief. Bioinformatics. 14, 178–192 (2013). (PMID: 2251742710.1093/bib/bbs017)
Kim, D. et al. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019). (PMID: 31375807760550910.1038/s41587-019-0201-4)
Liao, Y. et al. featureCounts: an efficient general-purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014). (PMID: 2422767710.1093/bioinformatics/btt656)
معلومات مُعتمدة: F31 CA224796 United States CA NCI NIH HHS; P30 CA014051 United States CA NCI NIH HHS; R01 CA234600 United States CA NCI NIH HHS; United States HHMI Howard Hughes Medical Institute
المشرفين على المادة: 0 (Antibodies, Monoclonal, Humanized)
0 (Chemokine CCL2)
0 (GATA4 Transcription Factor)
0 (GATA4 protein, human)
0 (Gata4 protein, mouse)
0 (Homeodomain Proteins)
128559-51-3 (RAG-1 protein)
52CMI0WC3Y (atezolizumab)
تواريخ الأحداث: Date Created: 20220112 Date Completed: 20220210 Latest Revision: 20221024
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC8752777
DOI: 10.1038/s41467-021-27731-5
PMID: 35017504
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-021-27731-5