دورية أكاديمية

Genetic diversity in terrestrial subsurface ecosystems impacted by geological degassing.

التفاصيل البيبلوغرافية
العنوان: Genetic diversity in terrestrial subsurface ecosystems impacted by geological degassing.
المؤلفون: Bornemann TLV; Environmental Microbiology and Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany., Adam PS; Environmental Microbiology and Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany., Turzynski V; Environmental Microbiology and Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany., Schreiber U; Department of Geology, University Duisburg-Essen, Essen, Germany., Figueroa-Gonzalez PA; Environmental Microbiology and Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany., Rahlff J; Environmental Microbiology and Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany.; Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linneaus University, Kalmar, Sweden., Köster D; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany., Schmidt TC; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany.; Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, Essen, Germany., Schunk R; Geyser-Center, Andernach, Germany., Krauthausen B; Institute of Applied Geosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany., Probst AJ; Environmental Microbiology and Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany. alexander.probst@uni-due.de.; Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, Essen, Germany. alexander.probst@uni-due.de.
المصدر: Nature communications [Nat Commun] 2022 Jan 12; Vol. 13 (1), pp. 284. Date of Electronic Publication: 2022 Jan 12.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: Ecosystem* , Genetic Variation* , Geology* , Metagenomics*, Archaea/genetics ; Bacteria/genetics ; Phylogeny ; Prokaryotic Cells ; Soil Microbiology ; Water Microbiology
مستخلص: Earth's mantle releases 38.7 ± 2.9 Tg/yr CO 2 along with other reduced and oxidized gases to the atmosphere shaping microbial metabolism at volcanic sites across the globe, yet little is known about its impact on microbial life under non-thermal conditions. Here, we perform comparative metagenomics coupled to geochemical measurements of deep subsurface fluids from a cold-water geyser driven by mantle degassing. Key organisms belonging to uncultivated Candidatus Altiarchaeum show a global biogeographic pattern and site-specific adaptations shaped by gene loss and inter-kingdom horizontal gene transfer. Comparison of the geyser community to 16 other publicly available deep subsurface sites demonstrate a conservation of chemolithoautotrophic metabolism across sites. In silico replication measures suggest a linear relationship of bacterial replication with ecosystems depth with the exception of impacted sites, which show near surface characteristics. Our results suggest that subsurface ecosystems affected by geological degassing are hotspots for microbial life in the deep biosphere.
(© 2022. The Author(s).)
References: Magnabosco, C. et al. The biomass and biodiversity of the continental subsurface. Nat. Geosci. 11, 707–717 (2018). (PMID: 10.1038/s41561-018-0221-6)
Flemming, H.-C. & Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019). (PMID: 3076090210.1038/s41579-019-0158-9)
Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive Earth’s biogeochemical cycles. Science 320, 1034–1039 (2008). (PMID: 1849728710.1126/science.1153213)
Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7, 1–11 (2016). (PMID: 10.1038/ncomms13219)
Probst, A. J. et al. Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface. Nat. Microbiol. 3, 328–336 (2018). (PMID: 29379208679243610.1038/s41564-017-0098-y)
Castelle, C. J. et al. Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr. Biol. 25, 690–701 (2015). (PMID: 2570257610.1016/j.cub.2015.01.014)
Stevens, T. Lithoautotrophy in the subsurface. FEMS Microbiol. Rev. 20, 327–337 (1997). (PMID: 10.1111/j.1574-6976.1997.tb00318.x)
Stevens, T. O. & McKinley, J. P. Abiotic controls on H 2 production from basalt–water reactions and implications for aquifer biogeochemistry. Environ. Sci. Technol. 34, 826–831 (2000). (PMID: 10.1021/es990583g)
Nyyssönen, M. et al. Taxonomically and functionally diverse microbial communities in deep crystalline rocks of the Fennoscandian shield. ISME J. 8, 126–138 (2014). (PMID: 2394966210.1038/ismej.2013.125)
Lau, M. C. Y. et al. An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers. Proc. Natl Acad. Sci. USA 113, E7927–E7936 (2016). (PMID: 27872277515041110.1073/pnas.1612244113)
Probst, A. J. et al. Genomic resolution of a cold subsurface aquifer community provides metabolic insights for novel microbes adapted to high CO 2 concentrations. Environ. Microbiol. 19, 459–474 (2017). (PMID: 2711249310.1111/1462-2920.13362)
Probst, A. J. et al. Biology of a widespread uncultivated archaeon that contributes to carbon fixation in the subsurface. Nat. Commun. 5, 5497 (2014). (PMID: 2542541910.1038/ncomms6497)
Hernsdorf, A. W. et al. Potential for microbial H 2 and metal transformations associated with novel bacteria and archaea in deep terrestrial subsurface sediments. ISME J. 11, 1915–1929 (2017). (PMID: 28350393552002810.1038/ismej.2017.39)
Bird, J. T., Baker, B. J., Probst, A. J., Podar, M. & Lloyd, K. G. Culture independent genomic comparisons reveal environmental adaptations for altiarchaeales. Front. Microbiol. 7, 1221 (2016).
Moissl, C., Rachel, R., Briegel, A., Engelhardt, H. & Huber, R. The unique structure of archaeal ‘hami’, highly complex cell appendages with nano-grappling hooks: unique structure of archaeal ‘hami’. Mol. Microbiol. 56, 361–370 (2005). (PMID: 1581373010.1111/j.1365-2958.2005.04294.x)
Wood, H. G. Life with CO or CO 2 and H 2 as a source of carbon and energy. FASEB J. 5, 156–163 (1991). (PMID: 190079310.1096/fasebj.5.2.1900793)
Gutiérrez-Preciado, A. et al. Functional shifts in microbial mats recapitulate early Earth metabolic transitions. Nat. Ecol. Evol. 2, 1700–1708 (2018). (PMID: 30297749621797110.1038/s41559-018-0683-3)
Adam, P. S., Borrel, G. & Gribaldo, S. An archaeal origin of the Wood–Ljungdahl H 4 MPT branch and the emergence of bacterial methylotrophy. Nat. Microbiol. 4, 2155–2163 (2019). (PMID: 3145177210.1038/s41564-019-0534-2)
Aiuppa, A., Fischer, T. P., Plank, T. & Bani, P. CO 2 flux emissions from the Earth’s most actively degassing volcanoes, 2005–2015. Sci. Rep. 9, 5442 (2019). (PMID: 30931997644379210.1038/s41598-019-41901-y)
Bräuer, K., Kämpf, H., Niedermann, S. & Strauch, G. Indications for the existence of different magmatic reservoirs beneath the Eifel area (Germany): A multi-isotope (C, N, He, Ne, Ar) approach. Chem. Geol. 356, 193–208 (2013). (PMID: 10.1016/j.chemgeo.2013.08.013)
Werner, C. et al. Carbon dioxide emissions from subaerial volcanic regions: two decades in review. in Deep Carbon (eds Orcutt, B. N., Daniel, I. & Dasgupta, R.) 188–236 (Cambridge University Press, 2019). https://doi.org/10.1017/9781108677950.008 .
Zhang, Y. Degassing history of earth. in Treatise on Geochemistry 37–69 (Elsevier, 2014). https://doi.org/10.1016/B978-0-08-095975-7.01302-4 .
Caracausi, A. & Paternoster, M. Radiogenic helium degassing and rock fracturing: a case study of the southern Apennines active tectonic region. J. Geophys. Res. Solid Earth 120, 2200–2211 (2015). (PMID: 10.1002/2014JB011462)
Loreto, M. F., Italiano, F., Deponte, D., Facchin, L. & Zgur, F. Mantle degassing on a near shore volcano, SE Tyrrhenian Sea. Terra Nova 27, 195–205 (2015). (PMID: 10.1111/ter.12148)
Gilfillan, S. M. V. et al. Noble gases confirm plume-related mantle degassing beneath Southern Africa. Nat. Commun. 10, 1–7 (2019). (PMID: 10.1038/s41467-019-12944-6)
Lee, H. et al. Mantle degassing along strike-slip faults in the Southeastern Korean Peninsula. Sci. Rep. 9, 1–9 (2019).
Fullerton, K. M. et al. Plate Tectonics Drive Deep Biosphere Microbial Community Composition. https://doi.org/10.31223/osf.io/gyr7n (2019).
Hedrick, D. B., Pledger, R. D., White, D. C. & Baross, J. A. In situ microbial ecology of hydrothermal vent sediments. FEMS Microbiol. Lett. 101, 1–10 (1992). (PMID: 10.1111/j.1574-6968.1992.tb05755.x)
Schrenk, M. O., Holden, J. F. & Baross, J. A. Magma-to-microbe networks in the context of sulfide hosted microbial ecosystems. Wash. DC Am. Geophys. Union Geophys. Monogr. Ser. 178, 233–258 (2008).
Ding, J. et al. Microbial community structure of deep-sea hydrothermal vents on the ultraslow spreading Southwest Indian Ridge. Front. Microbiol. 8, 1012 (2017).
Tu, T.-H. et al. Microbial community composition and functional capacity in a terrestrial ferruginous, sulfate-depleted mud volcano. Front. Microbiol. 8, 2137 (2017).
Galambos, D., Anderson, R. E., Reveillaud, J. & Huber, J. A. Genome-resolved metagenomics and metatranscriptomics reveal niche differentiation in functionally redundant microbial communities at deep-sea hydrothermal vents. Environ. Microbiol. 21, 4395–4410 (2019). (PMID: 31573126689974110.1111/1462-2920.14806)
Frerichs, J. et al. Microbial community changes at a terrestrial volcanic CO 2 vent induced by soil acidification and anaerobic microhabitats within the soil column. FEMS Microbiol. Ecol. 84, 60–74 (2013). (PMID: 2315748610.1111/1574-6941.12040)
Mehlhorn, J., Beulig, F., Küsel, K. & Planer-Friedrich, B. Carbon dioxide triggered metal(loid) mobilisation in a mofette. Chem. Geol. 382, 54–66 (2014). (PMID: 10.1016/j.chemgeo.2014.05.027)
Beulig, F. et al. Carbon flow from volcanic CO 2 into soil microbial communities of a wetland mofette. ISME J. 9, 746–759 (2015). (PMID: 2521608610.1038/ismej.2014.148)
Beulig, F. et al. Altered carbon turnover processes and microbiomes in soils under long-term extremely high CO 2 exposure. Nat. Microbiol. 1, 1–10 (2016).
Rodriguez-R, L. M., Gunturu, S., Tiedje, J. M., Cole, J. R. & Konstantinidis, K. T. Nonpareil 3: fast estimation of metagenomic coverage and sequence diversity. mSystems 3, e00039–18 (2018).
Mori, K., Yamaguchi, K., Sakiyama, Y., Urabe, T. & Suzuki, K. Caldisericum exile gen. nov., sp. nov., an anaerobic, thermophilic, filamentous bacterium of a novel bacterial phylum, Caldiserica phyl. nov., originally called the candidate phylum OP5, and description of Caldisericaceae fam. nov., Caldisericales ord. nov. and Caldisericia classis nov. Int. J. Syst. Evol. Microbiol. 59, 2894–2898 (2009). (PMID: 1962860010.1099/ijs.0.010033-0)
Kairesalo, T., Tuominen, L., Hartikainen, H. & Rankinen, K. The role of bacteria in the nutrient exchange between sediment and water in a flow-through system. Microb. Ecol. 29, 129–144 (1995). (PMID: 2418671910.1007/BF00167160)
Vieira-Silva, S. & Rocha, E. P. C. The systemic imprint of growth and its uses in ecological (meta)genomics. PLOS Genet. 6, e1000808 (2010). (PMID: 20090831279763210.1371/journal.pgen.1000808)
Tully, B. J., Wheat, C. G., Glazer, B. T. & Huber, J. A. A dynamic microbial community with high functional redundancy inhabits the cold, oxic subseafloor aquifer. ISME J. 12, 1 (2017). (PMID: 29099490573902410.1038/ismej.2017.187)
Probst, A. J. et al. Tackling the minority: sulfate-reducing bacteria in an archaea-dominated subsurface biofilm. ISME J. 7, 635–651 (2013). (PMID: 2317866910.1038/ismej.2012.133)
Starnawski, P. et al. Microbial community assembly and evolution in subseafloor sediment. Proc. Natl Acad. Sci. USA 114, 2940–2945 (2017). (PMID: 28242677535838610.1073/pnas.1614190114)
Kirkpatrick, J. B., Walsh, E. A. & D’Hondt, S. Microbial selection and survival in subseafloor sediment. Front. Microbiol. 10, 956 (2019).
Lloyd, K. G. et al. Evidence for a growth zone for deep-subsurface microbial clades in near-surface anoxic sediments. Appl. Environ. Microbiol. 86, e00877–20 (2020).
Mehrshad, M. et al. Energy efficiency and biological interactions define the core microbiome of deep oligotrophic groundwater. Nat. Commun. 12, 4253 (2021). (PMID: 34253732827579010.1038/s41467-021-24549-z)
Olsen, I. Biofilm-specific antibiotic tolerance and resistance. Eur. J. Clin. Microbiol. Infect. Dis. 34, 877–886 (2015). (PMID: 2563053810.1007/s10096-015-2323-z)
Becraft, E. D. et al. Evolutionary stasis of a deep subsurface microbial lineage. ISME J. https://doi.org/10.1038/s41396-021-00965-3 (2021).
Cocks, L. R. M. & Torsvik, T. H. Baltica from the late Precambrian to mid-Palaeozoic times: the gain and loss of a terrane’s identity. Earth Sci. Rev. 72, 39–66 (2005). (PMID: 10.1016/j.earscirev.2005.04.001)
Torsvik, T. H. et al. Phanerozoic polar wander, palaeogeography and dynamics. Earth Sci. Rev. 114, 325–368 (2012). (PMID: 10.1016/j.earscirev.2012.06.007)
Maruyama, S., Isozaki, Y., Kimura, G. & Terabayashi, M. Paleogeographic maps of the Japanese Islands: plate tectonic synthesis from 750 Ma to the present. Isl. Arc. 6, 121–142 (1997). (PMID: 10.1111/j.1440-1738.1997.tb00043.x)
Hausner, M. & Wuertz, S. High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl. Environ. Microbiol. 65, 3710–3713 (1999). (PMID: 104270709155510.1128/AEM.65.8.3710-3713.1999)
Nelson-Sathi, S. et al. Origins of major archaeal clades correspond to gene acquisitions from bacteria. Nature 517, 77–80 (2015). (PMID: 2531756410.1038/nature13805)
Schunk, R. Der Ausbruch—ein faszinierendes Naturschauspiel. in Naturschauspiel Geysir Andernach 20–36 (2012).
Krauthausen, B., Deuster, J. & Lang, R. Die Flucht des Wassers aus der Tiefe. Der Geysir von Andernach am Rhein. In Faszination Geologie. Die bedeutendsten Geotope Deutschlands. 110–111 (2007).
Altfeld, E. Die physikalischen Grundlagen des intermittierenden Kohlensäuresprudels zu Namedy bei Andernach a. Rh. (1913).
Dèzes, P., Schmid, S. M. & Ziegler, P. A. Evolution of the European Cenozoic Rift System: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics 389, 1–33 (2004). (PMID: 10.1016/j.tecto.2004.06.011)
Meyer, W. & Stets, J. Geologische Übersichtskarte und Profil des Mittelrheintales—1:100000, mit Erläuterungen. 49 (Geologisches Landesamt Rheinland-Pfalz, Mainz, 2000).
Meyer, W. & Striem, H. L. Geological indications for young horizontal displacements in the Central Rhenish Massif. Geol. Indic. Young Horiz. Displac. Cent. Rhenish Massif 2, 97–100 (1983).
Schreiber, U. & Rotsch, S. Cenozoic block rotation according to a conjugate shear system in central Europe—indications from palaeomagnetic measurements. Tectonophysics 299, 111–142 (1998). (PMID: 10.1016/S0040-1951(98)00201-7)
Ritter, J. R. R. The Seismic Signature of the Eifel Plume. springerprofessional.de https://www.springerprofessional.de/the-seismic-signature-of-the-eifel-plume/2715234 (2007).
JN Fass, N. J. Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files. (2011).
Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017). (PMID: 28298430541177710.1101/gr.213959.116)
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 11, 119 (2010). (PMID: 10.1186/1471-2105-11-119)
Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015). (PMID: 2540200710.1038/nmeth.3176)
Suzek, B. E., Huang, H., McGarvey, P., Mazumder, R. & Wu, C. H. UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics 23, 1282–1288 (2007). (PMID: 1737968810.1093/bioinformatics/btm098)
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012). (PMID: 22388286332238110.1038/nmeth.1923)
Brown, C. T., Olm, M. R., Thomas, B. C. & Banfield, J. F. Measurement of bacterial replication rates in microbial communities. Nat. Biotechnol. 34, 1256–1263 (2016). (PMID: 27819664553856710.1038/nbt.3704)
Wu, Y.-W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016). (PMID: 2651582010.1093/bioinformatics/btv638)
Dick, G. J. et al. Community-wide analysis of microbial genome sequence signatures. Genome Biol. 10, R85 (2009). (PMID: 19698104274576610.1186/gb-2009-10-8-r85)
Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014). (PMID: 2521818010.1038/nmeth.3103)
Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018). (PMID: 29807988678697110.1038/s41564-018-0171-1)
Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864 (2017). (PMID: 28742071570273210.1038/ismej.2017.126)
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004). (PMID: 1503414739033710.1093/nar/gkh340)
Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010). (PMID: 20626897301775810.1186/1471-2148-10-210)
Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015). (PMID: 2537143010.1093/molbev/msu300)
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018). (PMID: 2907790410.1093/molbev/msx281)
Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010). (PMID: 2052563810.1093/sysbio/syq010)
Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016). (PMID: 27095192498788310.1093/nar/gkw290)
Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2020).
Wu, Z., Liu, J., Yang, H. & Xiang, H. DNA replication origins in archaea. Front. Microbiol. 5, 179 (2014).
Pebesma, E. & Bivand, R. Classes and Methods for Spatial Data in R. R News 5, 9–13 (2005).
Rodriguez-R, L. M. & Konstantinidis, K. T. The Enveomics Collection: A Toolbox for Specialized Analyses of Microbial Genomes and Metagenomes. https://doi.org/10.7287/peerj.preprints.1900v1 (2016).
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, Austria, 2008).
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003). (PMID: 1459765840376910.1101/gr.1239303)
Zhou, Z., Tran, P., Liu, Y., Kieft, K. & Anantharaman, K. METABOLIC: a scalable high-throughput metabolic and biogeochemical functional trait profiler based on microbial genomes. Preprint at bioRxiv https://doi.org/10.1101/761643 (2019).
Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014). (PMID: 2464206310.1093/bioinformatics/btu153)
Eddy, S. R. Accelerated profile HMM Searches. PLoS Comput. Biol. 7, e1002195 (2011). (PMID: 22039361319763410.1371/journal.pcbi.1002195)
Darling, A. E. et al. PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ 2, e243 (2014). (PMID: 24482762389738610.7717/peerj.243)
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017). (PMID: 28481363545324510.1038/nmeth.4285)
Kallmeyer, J., Pockalny, R., Adhikari, R. R., Smith, D. C. & D’Hondt, S. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc. Natl Acad. Sci. USA 109, 16213–16216 (2012). (PMID: 22927371347959710.1073/pnas.1203849109)
Haynes, W. Tukey’s Test. In Encyclopedia of Systems Biology (eds Dubitzky, W., Wolkenhauer, O., Cho, K.-H. & Yokota, H.) 2303–2304 (Springer, New York, 2013).
Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948). (PMID: 10.1002/j.1538-7305.1948.tb01338.x)
Lakens, D., Scheel, A. M. & Isager, P. M. Equivalence testing for psychological research: a tutorial. Adv. Methods Pract. Psychol. Sci. 1, 259–269 (2018). (PMID: 10.1177/2515245918770963)
Simonsohn, U. Small telescopes: detectability and the evaluation of replication results. Psychol. Sci. https://doi.org/10.1177/0956797614567341 (2015).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, 2009).
Anisimova, M., Gil, M., Dufayard, J.-F., Dessimoz, C. & Gascuel, O. Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst. Biol. 60, 685–699 (2011). (PMID: 21540409315833210.1093/sysbio/syr041)
تواريخ الأحداث: Date Created: 20220113 Date Completed: 20220214 Latest Revision: 20221106
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC8755723
DOI: 10.1038/s41467-021-27783-7
PMID: 35022403
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-021-27783-7