دورية أكاديمية

Longitudinal monitoring of neutral and adaptive genomic diversity in a reintroduction.

التفاصيل البيبلوغرافية
العنوان: Longitudinal monitoring of neutral and adaptive genomic diversity in a reintroduction.
المؤلفون: Marshall IR; Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia., Brauer CJ; Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia., Wedderburn SD; School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia., Whiterod NS; Aquasave-Nature Glenelg Trust, Victor Harbor, South Australia, Australia., Hammer MP; Natural Sciences, Museum and Art Gallery of the Northern Territory, Darwin, Northern Territory, Australia., Barnes TC; New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Nelson Bay, New South Wales, Australia.; Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia., Attard CRM; Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia., Möller LM; Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia., Beheregaray LB; Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.
المصدر: Conservation biology : the journal of the Society for Conservation Biology [Conserv Biol] 2022 Aug; Vol. 36 (4), pp. e13889. Date of Electronic Publication: 2022 Mar 25.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Blackwell Publishing, Inc. on behalf of the Society for Conservation Biology Country of Publication: United States NLM ID: 9882301 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1523-1739 (Electronic) Linking ISSN: 08888892 NLM ISO Abbreviation: Conserv Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: Malden, MA : Blackwell Publishing, Inc. on behalf of the Society for Conservation Biology
Original Publication: Boston, Mass. : Blackwell Scientific Publications,
مواضيع طبية MeSH: Biodiversity* , Conservation of Natural Resources*, Animals ; Genomics ; Population Density
مستخلص: Restoration programs in the form of ex-situ breeding combined with reintroductions are becoming critical to counteract demographic declines and species losses. Such programs are increasingly using genetic management to improve conservation outcomes. However, the lack of long-term monitoring of genetic indicators following reintroduction prevents assessments of the trajectory and persistence of reintroduced populations. We carried out an extensive monitoring program in the wild for a threatened small-bodied fish (southern pygmy perch, Nannoperca australis) to assess the long-term genomic effects of its captive breeding and reintroduction. The species was rescued prior to its extirpation from the terminal lakes of Australia's Murray-Darling Basin, and then used for genetically informed captive breeding and reintroductions. Subsequent annual or biannual monitoring of abundance, fitness, and occupancy over a period of 11 years, combined with postreintroduction genetic sampling, revealed survival and recruitment of reintroduced fish. Genomic analyses based on data from the original wild rescued, captive born, and reintroduced cohorts revealed low inbreeding and strong maintenance of neutral and candidate adaptive genomic diversity across multiple generations. An increasing trend in the effective population size of the reintroduced population was consistent with field monitoring data in demonstrating successful re-establishment of the species. This provides a rare empirical example that the adaptive potential of a locally extinct population can be maintained during genetically informed ex-situ conservation breeding and reintroduction into the wild. Strategies to improve biodiversity restoration via ex-situ conservation should include genetic-based captive breeding and longitudinal monitoring of standing genomic variation in reintroduced populations.
(© 2022 Society for Conservation Biology.)
References: Alexander, D. H., Novembre, J., & Lange, K. (2009). Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 19, 1655-1664.
Alvarez, M., Schrey, A. W., & Richards, C. L. (2015). Ten years of transcriptomics in wild populations: What have we learned about their ecology and evolution? Molecular Ecology, 24, 710-725.
Andrews, S. (2010). FastQC: A quality control tool for high throughput sequence data. Cambridge: Babraham Bioinformatics, Babraham Institute.
Attard, C. R. M., Möller, L. M., Sasaki, M., Hammer, M. P., Bice, C. M., Brauer, C. J., Carvalho, D. C., Harris, J. O., & Beheregaray, L. B. (2016a). A novel holistic framework for genetic-based captive-breeding and reintroduction programs. Conservation Biology, 30, 1060-1069.
Attard, C. R., Brauer, C. J., Van Zoelen, J. D., Sasaki, M., Hammer, M. P., Morrison, L., Harris, J. O., Möller, L. M., & Beheregaray, L. B. (2016b). Multi-generational evaluation of genetic diversity and parentage in captive southern pygmy perch (Nannoperca australis). Conservation Genetics, 17, 1469-1473.
Beheregaray, L., Attard, C., Brauer, C., Whiterod, N., Wedderburn, S., & Hammer, M. (2021). Conservation breeding and reintroduction of pygmy perches in the lower Murray-Darling Basin, Australia: Two similar species, two contrasting outcomes. In P. S. Soorae (Ed.), IUCN Global Reintroduction Perspectives. Case studies from around the globe (pp. 26-31). Canada and Gland: Calgary Zoo.
Bell, D. A., Robinson, Z. L., Funk, W. C., Fitzpatrick, S. W., Allendorf, F. W., DA, T., & Whiteley, A. R. (2019). The exciting potential and remaining uncertainties of genetic rescue. Trends in Ecology & Evolution, 34, 1070-1079.
Bossdorf, O., Richards, C. L., & Pigliucci, M. (2008). Epigenetics for ecologists. Ecology Letters, 11, 106-115.
Bradshaw, C. J. A., Ehrlich, P. R., Beattie, A., Ceballos, G., Crist, E., Diamond, J., Dirzo, R., Ehrlich, A. H., Harte, J., Harte, M. E., Pyke, G., Raven, P. H., Ripple, W. J., Saltré, F., Turnbull, C., Wackernagel, M., & Blumstein, D. T. (2021). Underestimating the challenges of avoiding a ghastly future. Frontiers in Conservation Science, 1, 615419.
Brauer, C. J., & Beheregaray, L. B. (2020). Recent and rapid anthropogenic habitat fragmentation increases extinction risk for freshwater biodiversity. Evolutionary Applications, 13, 2857-286.
Brauer, C. J., Hammer, M. P., & Beheregaray, L. B. (2016). Riverscape genomics of a threatened fish across a hydroclimatically heterogeneous river basin. Molecular Ecology, 25, 5093-5113.
Brauer, C. J., Unmack, P. J., & Beheregaray, L. B. (2017). Comparative ecological transcriptomics and the contribution of gene expression to the evolutionary potential of a threatened fish. Molecular Ecology, 26, 6841-6856.
Brauer, C. J., Unmack, P. J., Hammer, M. P., Adams, M., & Beheregaray, L. B. (2013). Catchment-scale conservation units identified for the threatened Yarra pygmy perch (Nannoperca obscura) in highly modified river systems. Plos One, 8, e82953.
Brown, C., & Day, R. L. (2002). The future of stock enhancements: Lessons for hatchery practice from conservation biology. Fish and Fisheries, 3, 79-94.
Buckley, S. J., Brauer, C. J., Unmack, P. J., Hammer, M. P., & Beheregaray, L. B. (2021). The roles of aridification and sea level changes in the diversification and persistence of freshwater fish lineages. Molecular Ecology, 30, 4866-4883.
Christie, M. R., Marine, M. L., Fox, S. E., French, R. A., & Blouin, M. S. (2016). A single generation of domestication heritably alters the expression of hundreds of genes. Nature Communications, 7, 10676.
Christie, M. R., Marine, M. L., French, R. A., & Blouin, M. S. (2012). Genetic adaptation to captivity can occur in a single generation. Proceedings of the National Academy of Sciences, 109, 238-242.
Cole, T. L., Hammer, M. P., Unmack, P. J., Teske, P. R., Brauer, C. J., Adams, M., & Beheregaray, L. B. (2016). Range-wide fragmentation in a threatened fish associated with post-European settlement modification in the Murray-Darling Basin, Australia. Conservation Genetics, 17, 1377-1391.
Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E., Lunter, G., Marth, G. T., & Sherry, S. T. (2011). The variant call format and VCFtools. Bioinformatics, 27, 2156-2158.
DeWoody, J. A., Harder, A. M., Mathur, S., & Willoughby, J. R. (2021). The long-standing significance of genetic diversity in conservation. Molecular Ecology, 30, 4147-4154.
Do, C., Waples, R. S., Peel, D., Macbeth, G., Tillett, B. J., & Ovenden, J. R. (2014). NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Molecular Ecology Resources, 14, 209-214.
Dowling, T. E., Turner, T. F., Carson, E. W., Saltzgiver, M. J., Adams, D., Kesner, B., & Marsh, P. C. (2014). Time-series analysis reveals genetic responses to intensive management of razorback sucker (Xyrauchen texanus). Evolutionary Applications, 7, 339-354.
de Oliveira, A. G., Bailly, D., Cassemiro, F. A., Couto, E. V. D., Bond, N., Gilligan, D., Rangel, T. F., Angostinho, A. A., & Kennard, M. J. (2019). Coupling environment and physiology to predict effects of climate change on the taxonomic and functional diversity of fish assemblages in the Murray-Darling Basin, Australia. Plos One, 14, e0225128.
Excoffier, L., & Lischer, H. E. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564-567.
Fitzpatrick, S. W., Bradburd, G. S., Kremer, C. T., Salerno, P. E., Angeloni, L. M., & Funk, W. C. (2020). Genomic and fitness consequences of genetic rescue in wild populations. Current Biology, 30, 517-522.
Flather, C. H., Hayward, G. D., Beissinger, S. R., & Stephens, P. A. (2011). Minimum viable populations: Is there a ‘magic number’ for conservation practitioners? Trends Ecology & Evolution, 26, 307-316.
Foll, M., & Gaggiotti, O. (2008). A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics, 180, 977-993.
Frankham, R. (2008). Genetic adaptation to captivity in species conservation programs. Molecular Ecology, 17, 325-333.
Frankham, R. (2010). Challenges and opportunities of genetic approaches to biological conservation. Biological Conservation, 143, 1919-1927.
Frankham, R. (2015). Genetic rescue of small inbred populations: Meta-analysis reveals large and consistent benefits of gene flow. Molecular Ecology, 24, 2610-2618.
Frankham, R., Bradshaw, C. J. A., & Brook, B. W. (2014). Genetics in conservation management: Revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biological Conservation, 170, 53-63.
Fraser, D. J., Debes, P. V., Bernatchez, L., & Hutchings, J. A. (2014). Population size, habitat fragmentation, and the nature of adaptive variation in a stream fish. Proceedings of the Royal Society B: Biological Sciences, 281(1790), 20140370.
Goudet, J. (2005). Hierfstat, a package for R to compute and test hierarchical F-statistics. Molecular Ecology Notes, 5, 184-186.
Grossen, C., Biebach, I., Angelone-Alasaad, S., Keller, L. F., & Croll, D. (2018). Population genomics analyses of European ibex species show lower diversity and higher inbreeding in reintroduced populations. Evolutionary Applications, 11, 123-139.
Habel, J. C., Husemann, M., Finger, A., Danley, P. D., & Zachos, F. E. (2014). The relevance of time series in molecular ecology and conservation biology. Biological Reviews, 89, 484-492.
Hammer, M. P., Bice, C. M., Hall, A., Frears, A., Watt, A., Whiterod, N. S., Beheregaray, L. B., Harris, J. O., & Zampatti, B. P. (2013). Freshwater fish conservation in the face of critical water shortages in the southern Murray-Darling Basin, Australia. Marine and Freshwater Research, 64, 807-821.
He, X., Johansson, M. L., & Heath, D. D. (2016). Role of genomics and transcriptomics in selection of reintroduction source populations. Conservation Biology, 30, 1010-1018.
Jombart, T. (2008). adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics, 24, 1403-1405.
Jones, A., Ovenden, J., & Wang, Y. -. G. (2016). Improved confidence intervals for the linkage disequilibrium method for estimating effective population size. Heredity, 117, 217-223.
Koskinen, M. T., Haugen, T. O., & Primmer, C. R. (2002). Contemporary fisherian life-history evolution in small salmonid populations. Nature, 419(6909), 826-830.
Kraaijeveld-smit, F. J., Griffiths, R. A., Moore, R. D., & Beebee, T. J. (2006). Captive breeding and the fitness of reintroduced species: A test of the responses to predators in a threatened amphibian. Journal of Applied Ecology, 43, 360-365.
Lande, R. (1993). Risks of population extinction from demographic and environmental stochasticity and random catastrophes. American Naturalist, 142, 911-927.
Lande, R., & Shannon, S. (1996). The role of genetic variation in adaptation and population persistence in a changing environment. Evolution; Internation Journal of Organic Evolution, 50, 434-437.
Lean, J., Hammer, M., Unmack, P., Adams, M., & Beheregaray, L. (2017). Landscape genetics informs mesohabitat preference and conservation priorities for a surrogate indicator species in a highly fragmented river system. Heredity, 118, 374-384.
Lintermans, M. (2007). Fishes of the Murray-Darling Basin: An introductory guide. Canberra: Murray-Darling Basin Commission.
Luikart, G., England, P. R., Tallmon, D., Jordan, S., & Taberlet, P. (2003). The power and promise of population genomics: From genotyping to genome typing. Nature Reviews Genetics, 4, 981-994.
Mathieu-Bégné, E., Loot, G., Chevalier, M., Paz-Vinas, I., & Blanchet, S. (2019). Demographic and genetic collapses in spatially structured populations: Insights from a long-term survey in wild fish metapopulations. Oikos, 128, 196-207.
Morrissey, M. B., & de Kerckhove, D. T. (2009). The maintenance of genetic variation due to asymmetric gene flow in dendritic metapopulations. American Naturalist, 174, 875-889.
Morrongiello, J. R., Bond, N. R., Crook, D. A., & Wong, B. B. M. (2010). Nuptial coloration varies with ambient light environment in a freshwater fish. Journal of Evolutionary Biology, 23, 2718-2725.
Morrongiello, J. R., Bond, N. R., Crook, D. A., & Wong, B. B. M. (2012). Spatial variation in egg size and egg number reflects trade-offs and bet-hedging in a freshwater fish. Journal of Animal Ecology, 81, 806-817.
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O'hara, R. B., Simpson, G. L., Solymos, P., & Stevens, M. H. H. (2019). Vegan: Community Ecology Package. R package version 2. 5-6.
Osborne, M. J., Carson, E. W., & Turner, T. F. (2012). Genetic monitoring and complex population dynamics: Insights from a 12-year study of the Rio Grande silvery minnow. Evolutionary Applications, 5, 553-574.
Ouborg, N. J., Pertoldi, C., Loeschcke, V., Bijlsma, R. K., & Hedrick, P. W. (2010). Conservation genetics in transition to conservation genomics. Trends in Genetics, 26, 177-187.
Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S., & Hoekstra, H. E. (2012). Double Digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. Plos One, 7, e37135.
Pew, J., Muir, P. H., Wang, J., & Frasier, T. R. (2015). related: An R package for analysing pairwise relatedness from codominant molecular markers. Molecular Ecology Resources, 15, 557-561.
Puritz, J. B., Hollenbeck, C. M., & Gold, J. R. (2014). dDocent: A RADseq, variant-calling pipeline designed for population genomics of non-model organisms. PeerJ, 2, e431.
R CoreTeam. (2019). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
Robert, A. (2009). Captive breeding genetics and reintroduction success. Biological Conservation, 142, 2915-2922.
Sandoval-Castillo, J., Gates, K., Brauer, C. J., Smith, S., Bernatchez, L., & Beheregaray, L. B. (2020). Adaptation of plasticity to projected maximum temperatures and across climatically defined bioregions. Proceedings of the National Academy of Sciences, 117, 17112-17121.
Sasaki, M., Hammer, M. P., Unmack, P. J., Adams, M., & Beheregaray, L. B. (2016). Population genetics of a widely distributed small freshwater fish with varying conservation concerns: The southern purple-spotted gudgeon, Mogurnda adspersa. Conservation Genetics, 17, 875-889.
Schwartz, M. K., Luikart, G., & Waples, R. S. (2007). Genetic monitoring as a promising tool for conservation and management. Trends in Ecology & Evolution, 22, 25-33.
Seddon, P., Armstrong, D., & Maloney, R. (2007). Developing the science of reintroduction biology. Conservation Biology, 21, 303-312.
Stange, M., Barrett, R. D. H., & Hendry, A. P. (2021). The importance of genomic variation for biodiversity, ecosystems and people. Nature Reviews Genetics, 22, 89-105.
Sunnucks, P., & Hales, D. F. (1996). Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). Molecular Biology and Evolution, 13, 510-524.
Todd, C. R., Koehn, J. D., Pearce, L., Dodd, L., Humphries, P., Morrongiello, & J. R. (2017). Forgotten fishes: What is the future for small threatened freshwater fish? Population risk assessment for southern pygmy perch, Nannoperca australis. Aquatic Conservation: Marine and Freshwater Ecosystems, 27, 1290-1300.
Tracy, L. N., Wallis, G. P., Efford, M. G., & Jamieson, I. G. (2011). Preserving genetic diversity in threatened species reintroductions: How many individuals should be released? Animal Conservation, 14, 439-446.
Unmack, P. J., Hammer, M. P., Adams, M., & Dowling, T. E. (2011). A phylogenetic analysis of pygmy perches (Teleostei: Percichthyidae) with an assessment of the major historical influences on aquatic biogeography in Southern Australia. Systematic Biology, 60, 797-812.
Wang, J. (2004). Monitoring and managing genetic variation in group breeding populations without individual pedigrees. Conservation Genetics, 5, 813-825.
Wang, J. (2007). Triadic IBD coefficients and applications to estimating pairwise relatedness. Genetics Research, 89, 135-153.
Waples, R. S., Antao, T., & Luikart, G. (2014). Effects of overlapping generations on linkage disequilibrium estimates of effective population size. Genetics, 197, 769-780.
Wedderburn, S. D., Whiterod, N. S., & Vilizzi, L. (2022). Occupancy modelling confirms the first extirpation of a freshwater fish from one of the world's largest river systems. Aquatic Conservation: Marine and Freshwater Ecosystems, 32, 258-268.
White, L. C., Moseby, K. E., Thomson, V. A., Donnellan, S. C., & Austin, J. J. (2018). Long-term genetic consequences of mammal reintroductions into an Australian conservation reserve. Biological Conservation, 219, 1-11.
Whiterod, N. S., Hammer, M. P., & Vilizzi, L. (2015). Spatial and temporal variability in fish community structure in Mediterranean climate temporary streams. Fundamental and Applied Limnology, 187, 135-150.
Whitlock, M. C. (2000). Fixation of new alleles and the extinction of small populations: Drift load, beneficial alleles, and sexual selection. Evolution; Internation Journal of Organic Evolution, 54, 1855-1861.
Willoughby, J. R., Fernandez, N. B., Lamb, M. C., Ivy, J. A., Lacy, R. C., & Dewoody, J. A. (2015). The impacts of inbreeding, drift and selection on genetic diversity in captive breeding populations. Molecular Ecology, 24, 98-110.
Witzenberger, K. A., & Hochkirch, A. (2011). Ex situ conservation genetics: A review of molecular studies on the genetic consequences of captive breeding programmes for endangered animal species. Biodiversity and Conservation, 20, 1843-1861.
Wood, J. L., Yates, M. C., & Fraser, D. J. (2016). Are heritability and selection related to population size in nature? Meta-analysis and conservation implications. Evolutionary Applications, 9, 640-657.
Woodworth, L. M., Montgomery, M. E., Briscoe, D. A., & Frankham, R. (2002). Rapid genetic deterioration in captive populations: Causes and conservation implications. Conservation Genetics, 3, 277-288.
فهرسة مساهمة: Keywords: Australian fish; Cuenca Murray-Darling; Murray-Darling Basin; Percichthyidae; adaptive genetic diversity; conservation genomics; diversidad genética adaptativa; especie amenazada; ex-situ population management; genómica de la conservación; genómica de la restauración; gestión poblacional ex situ; peces australianos; population genomics; restoration threatened species
Local Abstract: [Publisher, Spanish; Castilian] Monitoreo Longitudinal de la Diversidad Genómica Neutral y Adaptativa en una Reintroducción Marshall et al. 21-643 Resumen Los programas de restauración a manera de reproducción ex situ combinada con reintroducciones se están volviendo críticos para contrarrestar las declinaciones demográficas y la pérdida de especies. Dichos programas usan cada vez más la gestión genética para mejorar los resultados de conservación. Sin embargo, la falta de monitoreo a largo plazo de los indicadores genéticos posteriores a la reintroducción evita que se realicen evaluaciones de la trayectoria y la persistencia de las poblaciones reintroducidas. Se rescató un pez de talla pequeña (percha pigmea del sur [Nannoperca australis]) previo a su extirpación de los lagos terminales de la Cuenca Murray-Darling en Australia para después reproducirlo en cautiverio con información genética y reintroducirlo. Realizamos monitoreos anuales o bianuales de la abundancia, aptitud y ocupación en vida silvestre durante once años, además de un muestreo genético posterior a la reintroducción. Analizamos los datos genómicos de los grupos originales rescatados, los nacidos en cautiverio y los reintroducidos. Nuestro objetivo era evaluar los efectos genómicos a largo plazo de la reproducción en cautiverio y la reintroducción de esta especie. Esto reveló baja endogamia y el sólido mantenimiento de la diversidad genómica neutral y adaptativa durante varias generaciones. Encontramos una coherencia entre la tendencia creciente en el tamaño de la población efectiva de la población reintroducida y los datos de campo que demostraron el restablecimiento exitoso de la especie. Nuestro estudio proporciona un raro ejemplo empírico de cómo el potencial adaptativo de una población localmente extinta puede mantenerse durante la reproducción de conservación ex situ genéticamente informada y su reintroducción. Las estrategias para mejorar la restauración de la biodiversidad por medio de la conservación ex situ deberían incluir la reproducción en cautiverio basada en la genética y el monitoreo longitudinal de la variación genómica actual de las poblaciones reintroducidas.
تواريخ الأحداث: Date Created: 20220113 Date Completed: 20220801 Latest Revision: 20220912
رمز التحديث: 20221213
DOI: 10.1111/cobi.13889
PMID: 35023224
قاعدة البيانات: MEDLINE
الوصف
تدمد:1523-1739
DOI:10.1111/cobi.13889