دورية أكاديمية

The Cyanotoxin 2,4-DAB Reduces Viability and Causes Behavioral and Molecular Dysfunctions Associated with Neurodegeneration in Larval Zebrafish.

التفاصيل البيبلوغرافية
العنوان: The Cyanotoxin 2,4-DAB Reduces Viability and Causes Behavioral and Molecular Dysfunctions Associated with Neurodegeneration in Larval Zebrafish.
المؤلفون: Martin RM; Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA., Bereman MS; Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA., Marsden KC; Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA. kcmarsde@ncsu.edu.
المصدر: Neurotoxicity research [Neurotox Res] 2022 Apr; Vol. 40 (2), pp. 347-364. Date of Electronic Publication: 2022 Jan 14.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 100929017 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-3524 (Electronic) Linking ISSN: 10298428 NLM ISO Abbreviation: Neurotox Res Subsets: MEDLINE
أسماء مطبوعة: Publication: <2009-> : New York : Springer
Original Publication: [Amsterdam?] : Harwood Academic Publishers,
مواضيع طبية MeSH: Amino Acids, Diamino*/toxicity , Cyanobacteria* , Neurotoxicity Syndromes*, Animals ; Cyanobacteria Toxins ; Isomerism ; Larva ; Neurotoxins/toxicity ; Zebrafish
مستخلص: Exposure to cyanotoxins has been linked to neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer's, and Parkinson's disease. While the cyanotoxin β-methylamino-L-alanine (BMAA) has received much attention, cyanobacteria produce many cyanotoxic compounds, several of which have been detected in nature alongside BMAA, including 2,4-diaminobutyric acid (2,4-DAB) and N-(2-aminoethyl)glycine (AEG). Thus, the question of whether 2,4-DAB and AEG also cause neurotoxic effects in vivo is of great interest, as is the question of whether they interact to enhance toxicity. Here, we evaluate the toxic and neurotoxic effects of these cyanotoxins alone or in combination by measuring zebrafish larval viability and behavior after exposure. 2,4-DAB was the most potent cyanotoxin as it decreased larval viability by approximately 50% at 6 days post fertilization, while BMAA and AEG decreased viability by just 16% and 8%, respectively. Although we only observed minor neurotoxic effects on spontaneous locomotion, BMAA and AEG enhanced acoustic startle sensitivity, and they interacted in an additive manner to exert their effects. 2,4-DAB; however, only modulated startle kinematics, an indication of motor dysfunction. To investigate the mechanisms of 2,4-DAB's effects, we analyzed the protein profile of larval zebrafish exposed to 500 µM 2,4-DAB at two time points and identified molecular signatures consistent with neurodegeneration, including disruption of metabolic pathways and downregulation of the ALS-associated genes SOD1 and UBQLN4. Together, our data demonstrate that BMAA and its isomers AEG and 2,4-DAB cause neurotoxic effects in vivo, with 2,4-DAB as the most potent of the three in the zebrafish model.
(© 2022. The Author(s).)
References: Atkin G, Paulson H. (2014) Ubiquitin pathways in neurodegenerative disease. Front Mol Neurosci Jul 8;7:63. https://doi.org/10.3389/fnmol.2014.00063 . PMID: 25071440; PMCID: PMC4085722.
Banack SA, Cox PA (2003) Biomagnification of cycad neurotoxins in flying foxes: implications for ALS-PDC in Guam. Neurology 61(3):387–389. (PMID: 1291320410.1212/01.WNL.0000078320.18564.9F)
Baskoylu SN, Yersak J, O’Hern P, Grosser S, Simon J, Kim S, Schuch K, Dimitriadi M, Yanagi KS, Lins J, Hart AC (2018) Single copy/knock-in models of ALS SOD1 in C. elegans suggest loss and gain of function have different contributions to cholinergic and glutamatergic neurodegeneration. PLoS Genet 14(10):e1007682–e1007682. (PMID: 30296255620025810.1371/journal.pgen.1007682)
Beri J, Nash T, Martin RM, Bereman MS (2017) Exposure to BMAA mirrors molecular processes linked to neurodegenerative disease. Proteomics 17(17–18):1700161.
Böhme GA, Bon C, Lemaire M, Reibaud M, Piot O, Stutzmann JM, Doble A, Blanchard JC (1993) Altered synaptic plasticity and memory formation in nitric oxide synthase inhibitor-treated rats. Proc Natl Acad Sci USA 90(19):9191–9194. (PMID: 76924454752810.1073/pnas.90.19.9191)
Brettschneider J, Van Deerlin VM, Robinson JL, Kwong L, Lee EB, Ali YO, Safren N, Monteiro MJ, Toledo JB, Elman L, McCluskey L, Irwin DJ, Grossman M, Molina-Porcel L, Lee VM, Trojanowski JQ (2012) Pattern of ubiquilin pathology in ALS and FTLD indicates presence of C9ORF72 hexanucleotide expansion. Acta Neuropathol 123(6):825–839. (PMID: 22426854352156110.1007/s00401-012-0970-z)
Burgess HA, Granato M (2007a) Modulation of locomotor activity in larval zebrafish during light adaptation. J Exp Biol 210(Pt 14):2526–2539. (PMID: 1760195710.1242/jeb.003939)
Burgess HA, Granato M (2007b) Sensorimotor gating in larval zebrafish. J Neurosci off J Soc Neurosci 27(18):4984–4994. (PMID: 10.1523/JNEUROSCI.0615-07.2007)
Caller TA, Doolin JW, Haney JF, Murby AJ, West KG, Farrar HE, Ball A, Harris BT, Stommel EW (2009) A cluster of amyotrophic lateral sclerosis in New Hampshire: a possible role for toxic cyanobacteria blooms. Amyotroph Lateral Scler 10(S2):101–108. (PMID: 1992974110.3109/17482960903278485)
Chatziefthimiou AD, Chatziefthimiou AD, Deitch EJ, Deitch EJ, Glover WB, Glover WB, Powell JT, Powell JT, Banack SA, Banack SA, Richer RA, Richer RA, Cox PA, Cox PA, Metcalf JS, Metcalf JS (2018) Analysis of neurotoxic amino acids from marine waters, microbial mats, and seafood destined for human consumption in the Arabian Gulf. Neurotox Res 33(1):143–152. (PMID: 2876626910.1007/s12640-017-9772-3)
Chiu AS, Braidy N, Marçal H, Welch JH, Gehringer MM, Guillemin GJ, Neilan BA (2015) Global cellular responses to β-methyl-amino-l-alanine (BMAA) by olfactory ensheathing glial cells (OEC). Toxicon 99:136–145. (PMID: 2579731910.1016/j.toxicon.2015.03.009)
Chiu AS, Gehringer MM, Braidy N, Guillemin GJ, Welch JH, Neilan BA (2012) Excitotoxic potential of the cyanotoxin β-methyl-amino-l-alanine (BMAA) in primary human neurons. Toxicon 60(6):1159–1165. (PMID: 2288517310.1016/j.toxicon.2012.07.169)
Chiu AS, Gehringer MM, Braidy N, Guillemin GJ, Welch JH, Neilan BA (2013) Gliotoxicity of the cyanotoxin, β-methyl-amino-L-alanine (BMAA). Sci Rep 3(1):1482–1482. (PMID: 23508043360136910.1038/srep01482)
Cornell JA (2011) A retrospective view of mixture experiments. Qual Eng 23(4):315–331. (PMID: 10.1080/08982112.2011.602283)
Cox PA, Banack SA, Murch SJ, Rasmussen U, Tien G, Bidigare RR, Metcalf JS, Morrison LF, Codd GA, Bergman B, Bowers WS (2005) Diverse taxa of cyanobacteria produce β-N-methylamino-L-alanine, a neurotoxic amino acid. Proc Natl Acad Sci USA 102(14):5074–5078. (PMID: 1580944655596410.1073/pnas.0501526102)
Edens BM, Yan J, Miller N, Deng H-X, Siddique T, Ma YC (2017) A novel ALS-associated variant in UBQLN4 regulates motor axon morphogenesis. eLife 6.
Faassen EJ (2014) Presence of the neurotoxin BMAA in aquatic ecosystems: What do we really know? Toxins 6(3):1109–1138.
Ferraiuolo RM, Meister D, Leckie D, Dashti M, Franke J, Porter LA, Trant JF (2019) Neuro- and hepatic toxicological profile of (S)-2,4-diaminobutanoic acid in embryonic, adolescent and adult zebrafish. J Appl Toxicol 39(11):1568–1577. (PMID: 31389051)
Field NC, Metcalf JS, Caller TA, Banack SA, Cox PA, Stommel EW (2013) Linking β-methylamino-l-alanine exposure to sporadic amyotrophic lateral sclerosis in Annapolis, MD. Toxicon 70:179–183. (PMID: 2366033010.1016/j.toxicon.2013.04.010)
Frøyset AK, Khan EA, Fladmark KE (2016) Quantitative proteomics analysis of zebrafish exposed to sub-lethal dosages of β-methyl-amino-L-alanine (BMAA). Sci Rep 6:29631. (PMID: 27404450494073510.1038/srep29631)
Groten JP, Feron VJ, Sühnel J (2001) Toxicology of simple and complex mixtures. Trends Pharmacol Sci 22:316–322. (PMID: 1139516010.1016/S0165-6147(00)01720-X)
Helander A, Stödberg T, Jaeken J, Matthijs G, Eriksson M, Eggertsen G (2013) Dolichol kinase deficiency (DOLK-CDG) with a purely neurological presentation caused by a novel mutation. Mol Genet Metab 110(3):342–344. (PMID: 2389058710.1016/j.ymgme.2013.07.002)
Jungblut AD, Wilbraham J, Banack SA, Metcalf JS, Codd GA (2018) Microcystins, BMAA and BMAA isomers in 100-year-old Antarctic cyanobacterial mats collected during Captain R.F. Scott’s Discovery Expedition. Eur J Phycol 53(2):115. (PMID: 10.1080/09670262.2018.1442587)
Karalis V, Bateup HS (2021) Current approaches and future directions for the treatment of mTORopathies. Dev Neurosci 43(3–4):143–158. (PMID: 3391021410.1159/000515672)
Karamyan VT, Speth RC (2008) Animal models of BMAA neurotoxicity: a critical review. Life Sci 82(5):233–246. (PMID: 1819141710.1016/j.lfs.2007.11.020)
Khatri P, Drăghici S (2005) Ontological analysis of gene expression data: current tools, limitations, and open problems. Bioinformatics (Oxford, England) 21(18):3587–3595. (PMID: 10.1093/bioinformatics/bti565)
Krämer A, Green J, Pollard JJ, Tugendreich S (2014) Causal analysis approaches in ingenuity pathway analysis. Bioinformatics (Oxford, England) 30(4):523–530. (PMID: 10.1093/bioinformatics/btt703)
Lance E, Arnich N, Maignien T, Biré R (2018) Occurrence of β-N-methylamino-l-alanine (BMAA) and isomers in aquatic environments and aquatic food sources for humans. Toxins 10(2):83. (PMID: 584818410.3390/toxins10020083)
Li B, Yu S, Li G, Chen X, Huang M, Liao X, Li H, Hu F, Wu J (2019) Transfer of a cyanobacterial neurotoxin, β-methylamino-l-alanine from soil to crop and its bioaccumulation in Chinese cabbage. Chemosphere (Oxford) 219:997–1001. (PMID: 10.1016/j.chemosphere.2018.12.104)
Lobner D (2009) Mechanisms of beta-N-methylamino-L-alanine induced neurotoxicity. Amyotroph Lateral Scler 10(Suppl 2):56–60. (PMID: 1992973310.3109/17482960903269062)
Main BJ, Main BJ, Rodgers KJ, Rodgers KJ (2018) Assessing the combined toxicity of BMAA and its isomers 2,4-DAB and AEG in vitro using human neuroblastoma cells. Neurotox Res 33(1):33–42. (PMID: 2863465310.1007/s12640-017-9763-4)
Marquart GD, Tabor KM, Bergeron SA, Briggman KL, Burgess HA (2019) Prepontine non-giant neurons drive flexible escape behavior in zebrafish. PLoS Biol 17(10):e3000480–e3000480. (PMID: 31613896679393910.1371/journal.pbio.3000480)
Marsden KC, Jain RA, Wolman MA, Echeverry FA, Nelson JC, Hayer KE, Miltenberg B, Pereda AE, Granato M (2018) A Cyfip2-dependent excitatory interneuron pathway establishes the innate startle threshold. Cell Rep 23(3):878–887. (PMID: 29669291664282810.1016/j.celrep.2018.03.095)
Martin RM, Bereman MS, Marsden KC (2020) BMAA and MCLR interact to modulate behavior and exacerbate molecular changes related to neurodegeneration in larval zebrafish. Toxicol Sci 179(2):251–261. (PMID: 850242810.1093/toxsci/kfaa178)
Martin RM, Bereman MS, Marsden KC (2021) BMAA and MCLR Interact to Modulate Behavior and Exacerbate Molecular Changes Related to Neurodegeneration in Larval Zebrafish. Toxicol Sci Jan 28;179(2):251-261. https://doi.org/10.1093/toxsci/kfaa178 . PMID: 33295630; PMCID: PMC8502428.
Martin RM, Stallrich J, Bereman MS (2019) Mixture designs to investigate adverse effects upon co-exposure to environmental cyanotoxins. Toxicology 421:74–83. (PMID: 3102973410.1016/j.tox.2019.04.013)
Masseret E, Banack S, Boumédiène F, Abadie E, Brient L, Pernet F, Juntas-Morales R, Pageot N, Metcalf J, Cox P, Camu W, the French Network on A. L. S. C. D. and Investigation (2013) Dietary BMAA exposure in an amyotrophic lateral sclerosis cluster from southern France. PLoS One 8(12):e83406–e83406. (PMID: 24349504386275910.1371/journal.pone.0083406)
Mattson MP (2006) Neuronal life-and-death signaling, apoptosis, and neurodegenerative disorders. Antioxid Redox Signal 8(11–12):1997–2006. (PMID: 1703434510.1089/ars.2006.8.1997)
Meserve JH, Nelson JC, Marsden KC, Hsu J, Echeverry FA, Jain RA, Wolman MA, Pereda AE, Granato M (2021) A forward genetic screen identifies Dolk as a regulator of startle magnitude through the potassium channel subunit Kv1.1. PLoS Genet 17(6):e1008943–e1008943. (PMID: 34061829819541010.1371/journal.pgen.1008943)
Metcalf JS, Banack SA, Lindsay J, Morrison LF, Cox PA, Codd GA (2008) Co-occurrence of β-N-methylamino-l-alanine, a neurotoxic amino acid with other cyanobacterial toxins in British waterbodies, 1990–2004. Environ Microbiol 10:702–708. (PMID: 1823730510.1111/j.1462-2920.2007.01492.x)
Metcalf JS, Richer R, Cox PA, Codd GA (2012) Cyanotoxins in desert environments may present a risk to human health. Sci Total Environ 421–422:118–123. (PMID: 2236986710.1016/j.scitotenv.2012.01.053)
Murakami K, Murata N, Noda Y, Tahara S, Kaneko T, Kinoshita N, Hatsuta H, Murayama S, Barnham KJ, Irie K, Shirasawa T, Shimizu T (2011) SOD1 (copper/zinc superoxide dismutase) deficiency drives amyloid β protein oligomerization and memory loss in mouse model of Alzheimer disease. J Biol Chem 286(52):44557–44568. (PMID: 22072713324797610.1074/jbc.M111.279208)
Nunes-Costa D, Magalhães JD, G-Fernandes M, Cardoso SM, Empadinhas N (2020) Microbial BMAA and the pathway for Parkinson’s disease neurodegeneration. Front Aging Neurosci 12:26. (PMID: 32317956701901510.3389/fnagi.2020.00026)
Pierozan P, Karlsson O (2019) Mitotically heritable effects of BMAA on striatal neural stem cell proliferation and differentiation. Cell Death Dis 10(7):478–414. (PMID: 31209203657976610.1038/s41419-019-1710-2)
Politis SN, Colombo P, Colombo G, Rekkas DM (2017) Design of experiments (DoE) in pharmaceutical development. Drug Dev Ind Pharm 43(6):889–901. (PMID: 10.1080/03639045.2017.1291672)
Pomati F, Orlandi C, Clerici M, Luciani F, Zuccato E (2008) Effects and interactions in an environmentally relevant mixture of pharmaceuticals. Toxicol Sci 102(1):129–137. (PMID: 1804836810.1093/toxsci/kfm291)
Purdie EL, Samsudin S, Eddy FB, Codd GA (2009) Effects of the cyanobacterial neurotoxin β- N-methylamino-L-alanine on the early-life stage development of zebrafish ( Danio rerio). Aquat Toxicol 95(4):279–284. (PMID: 1929703310.1016/j.aquatox.2009.02.009)
Réveillon D, Abadie E, Séchet V, Masseret E, Hess P, Amzil Z (2015) β-N-methylamino-l-alanine (BMAA) and isomers: distribution in different food web compartments of Thau lagoon, French Mediterranean Sea. Mar Environ Res 110:8–18. (PMID: 2625458210.1016/j.marenvres.2015.07.015)
Réveillon D, Séchet V, Hess P, Amzil Z (2016) Production of BMAA and DAB by diatoms (Phaeodactylum tricornutum, Chaetoceros sp., Chaetoceros calcitrans and Thalassiosira pseudonana) and bacteria isolated from a diatom culture. Harmful Algae 58:45–50. (PMID: 2807345710.1016/j.hal.2016.07.008)
Rush T, Liu X, Lobner D (2012) Synergistic toxicity of the environmental neurotoxins methylmercury and β-N-methylamino-L-alanine. NeuroReport 23(4):216–219. (PMID: 2231468210.1097/WNR.0b013e32834fe6d6)
Saha S, Buttari B, Panieri E, Profumo E, Saso L (2020) An overview of Nrf2 signaling pathway and its role in inflammation. Molecules 25(22).
Samardzic K, Steele JR, Violi JP, Colville A, Mitrovic SM, Rodgers KJ (2021) Toxicity and bioaccumulation of two non-protein amino acids synthesised by cyanobacteria, β-N-Methylamino-L-alanine (BMAA) and 2,4-diaminobutyric acid (DAB), on a crop plant. Ecotoxicol Environ Saf 208:111515. (PMID: 3309914210.1016/j.ecoenv.2020.111515)
Schneider T, Simpson C, Desai P, Tucker M, Lobner D (2020) Neurotoxicity of isomers of the environmental toxin L-BMAA. Toxicon (Oxford) 184:175–179. (PMID: 10.1016/j.toxicon.2020.06.014)
Scott L, Downing T (2019) Dose-dependent adult neurodegeneration in a rat model after neonatal exposure to β-N-methylamino-l-alanine. Neurotox Res 35(3):711–723. (PMID: 3066655910.1007/s12640-019-9996-5)
Scott LL, Downing TG, Timothy D, Laura S (2017) A single neonatal exposure to BMAA in a rat model produces neuropathology consistent with neurodegenerative diseases. Toxins 10(1):22. (PMID: 579310910.3390/toxins10010022)
Silva DF, Candeias E, Esteves AR, Magalhães JD, Ferreira IL, Nunes-Costa D, Rego AC, Empadinhas N, Cardoso SM (2020) Microbial BMAA elicits mitochondrial dysfunction, innate immunity activation, and Alzheimer’s disease features in cortical neurons. J Neuroinflammation 17(1):332. (PMID: 33153477764328110.1186/s12974-020-02004-y)
Spasic S, Stanojevic M, Nesovic Ostojic J, Kovacevic S, Prostran M, Lopicic S (2018) Extensive depolarization and lack of recovery of leech Retzius neurons caused by 2,4 diaminobutyric acid. Aquat Toxicol 199:269–275. (PMID: 2967994610.1016/j.aquatox.2018.03.036)
Steinert JR, Chernova T, Forsythe ID (2010) Nitric oxide signaling in brain function, dysfunction, and dementia. Neuroscientist 16(4):435–452. (PMID: 2081792010.1177/1073858410366481)
Tripathi MK, Kartawy M, Amal H (2020) The role of nitric oxide in brain disorders: autism spectrum disorder and other psychiatric, neurological, and neurodegenerative disorders. Redox Biol 34:101567–101567. (PMID: 32464501725664510.1016/j.redox.2020.101567)
Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13(9):731–740. (PMID: 2734871210.1038/nmeth.3901)
Violi JP, Mitrovic SM, Colville A, Main BJ, Rodgers KJ (2019) Prevalence of β-methylamino-L-alanine (BMAA) and its isomers in freshwater cyanobacteria isolated from eastern Australia. Ecotoxicol Environ Saf 172:72–81. (PMID: 3068263610.1016/j.ecoenv.2019.01.046)
Vo Duy S, Munoz G, Dinh QT, Tien Do D, Simon DF, Sauvé S (2019) Analysis of the neurotoxin β-N-methylamino-L-alanine (BMAA) and isomers in surface water by FMOC derivatization liquid chromatography high resolution mass spectrometry. PLoS One 14(8):e0220698. (PMID: 31386693668406710.1371/journal.pone.0220698)
von Otter M, Landgren S, Nilsson S, Celojevic D, Bergström P, Håkansson A, Nissbrandt H, Drozdzik M, Bialecka M, Kurzawski M, Blennow K, Nilsson M, Hammarsten O, Zetterberg H (2010) Association of Nrf2-encoding NFE2L2 haplotypes with Parkinson’s disease. BMC Med Genet 11(1):36–36. (PMID: 10.1186/1471-2350-11-36)
Xiong J, Chen S, Pang N, Deng X, Yang L, He F, Wu L, Chen C, Yin F, Peng J (2019) Neurological diseases with autism spectrum disorder: role of ASD risk genes. Front Neurosci 13:349–349. (PMID: 31031587647031510.3389/fnins.2019.00349)
Yi J, Horky LL, Friedlich AL, Shi Y, Rogers JT, Huang X (2009) L-arginine and Alzheimer's disease. Int J Clin Exp Pathol 2(3):211-38. Epub 2008 Oct 2. PMID: 19079617; PMCID: PMC2600464.
Zhang Q, Zhang P, Qi G-J, Zhang Z, He F, Lv Z-X, Peng X, Cai H-W, Li T-X, Wang X-M, Tian B (2018) Cdk5 suppression blocks SIRT1 degradation via the ubiquitin-proteasome pathway in Parkinson’s disease models. Biochim Biophys Acta 1862(6):1443–1451. (PMID: 10.1016/j.bbagen.2018.03.021)
Zou Y, Wang J, Peng J, Wei H (2016) Oregano essential oil induces SOD1 and GSH expression through Nrf2 activation and alleviates hydrogen peroxide-induced oxidative damage in IPEC-J2 Cells. Oxid Med Cell Longev 2016:5987183–5987113. (PMID: 281052495220500)
معلومات مُعتمدة: P30 ES025128 United States ES NIEHS NIH HHS; R01 NS116354 United States NS NINDS NIH HHS; R01NS116354 United States NS NINDS NIH HHS
فهرسة مساهمة: Keywords: 2,4-DAB; Behavior; Cyanotoxins; Mixtures; Proteomics; Zebrafish
المشرفين على المادة: 0 (Amino Acids, Diamino)
0 (Cyanobacteria Toxins)
0 (Neurotoxins)
تواريخ الأحداث: Date Created: 20220114 Date Completed: 20220426 Latest Revision: 20240715
رمز التحديث: 20240715
مُعرف محوري في PubMed: PMC9035002
DOI: 10.1007/s12640-021-00465-4
PMID: 35029765
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-3524
DOI:10.1007/s12640-021-00465-4