دورية أكاديمية

Epithelial-mesenchymal transition and H 2 O 2 signaling - a driver of disease progression and a vulnerability in cancers.

التفاصيل البيبلوغرافية
العنوان: Epithelial-mesenchymal transition and H 2 O 2 signaling - a driver of disease progression and a vulnerability in cancers.
المؤلفون: Milton AV; Department of Pharmacy, Ludwig Maximilian University of Munich, Butenandtstr. 5-13, Haus C, D-81377 Munich, Germany., Konrad DB; Department of Pharmacy, Ludwig Maximilian University of Munich, Butenandtstr. 5-13, Haus C, D-81377 Munich, Germany.
المصدر: Biological chemistry [Biol Chem] 2022 Jan 17; Vol. 403 (4), pp. 377-390. Date of Electronic Publication: 2022 Jan 17 (Print Publication: 2022).
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Review
اللغة: English
بيانات الدورية: Publisher: Walter De Gruyter Country of Publication: Germany NLM ID: 9700112 Publication Model: Electronic-Print Cited Medium: Internet ISSN: 1437-4315 (Electronic) Linking ISSN: 14316730 NLM ISO Abbreviation: Biol Chem Subsets: MEDLINE
أسماء مطبوعة: Publication: Berlin : Walter De Gruyter
Original Publication: Berlin ; New York : W. De Gruyter, c1996-
مواضيع طبية MeSH: Epithelial-Mesenchymal Transition* , Neoplasms*/pathology, Disease Progression ; Humans ; Hydrogen Peroxide ; Quality of Life
مستخلص: Mutation-selective drugs constitute a great advancement in personalized anticancer treatment with increased quality of life and overall survival in cancers. However, the high adaptability and evasiveness of cancers can lead to disease progression and the development of drug resistance, which cause recurrence and metastasis. A common characteristic in advanced neoplastic cancers is the epithelial-mesenchymal transition (EMT) which is strongly interconnected with H 2 O 2 signaling, increased motility and invasiveness. H 2 O 2 relays its signal through the installation of oxidative posttranslational modifications on cysteines. The increased H 2 O 2 levels that are associated with an EMT confer a heightened sensitivity towards the induction of ferroptosis as a recently discovered vulnerability.
(© 2021 Walter de Gruyter GmbH, Berlin/Boston.)
References: Akter, S., Fu, L., Jung, Y., Conte, M.L., Lawson, J.R., Lowther, W.T., Sun, R., Liu, K., Yang, J., and Carroll, K.S. (2018). Chemical proteomics reveals new targets of cysteine sulfinic acid reductase. Nat. Chem. Biol. 14: 995–1004, https://doi.org/10.1038/s41589-018-0116-2.
Bak, D.W., Bechtel, T.J., Falco, J.A., and Weerapana, E. (2019). Cysteine reactivity across the subcellular universe. Curr. Opin. Chem. Biol. 48: 96–105, https://doi.org/10.1016/j.cbpa.2018.11.002.
Battistelli, C., Cicchini, C., Santangelo, L., Tramontano, A., Grassi, L., Gonzalez, F.J., de Nonno, V., Grassi, G., Amicone, L., and Tripodi, M. (2017). The Snail repressor recruits EZH2 to specific genomic sites through the enrollment of the lncRNA HOTAIR in epithelial-to-mesenchymal transition. Oncogene 36: 942–955, https://doi.org/10.1038/onc.2016.260.
Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S., and Kalayci, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organ. J. 5: 9–19, https://doi.org/10.1097/wox.0b013e3182439613.
Blandin Knight, S., Crosbie, P.A., Balata, H., Chudziak, J., Hussell, T., and Dive, C. (2017). Progress and prospects of early detection in lung cancer. Open Biol. 7, https://doi.org/10.1098/rsob.170070.
Bocci, F., Tripathi, S.C., Vilchez Mercedes, S.A., George, J.T., Casabar, J.P., Wong, P.K., Hanash, S.M., Levine, H., Onuchic, J.N., and Jolly, M.K. (2019). NRF2 activates a partial epithelial-mesenchymal transition and is maximally present in a hybrid epithelial/mesenchymal phenotype. Integr. Biol. (Camb.) 11: 251–263, https://doi.org/10.1093/intbio/zyz021.
Boudreau, H.E., Casterline, B.W., Rada, B., Korzeniowska, A., and Leto, T.L. (2012). Nox4 involvement in TGF-beta and SMAD3-driven induction of the epithelial-to-mesenchymal transition and migration of breast epithelial cells. Free Radic. Biol. Med. 53: 1489–1499, https://doi.org/10.1016/j.freeradbiomed.2012.06.016.
Boumahdi, S. and de Sauvage, F.J. (2020). The great escape: tumour cell plasticity in resistance to targeted therapy. Nat. Rev. Drug Discov. 19: 39–56, https://doi.org/10.1038/s41573-019-0044-1.
Brandes, R.P., Weissmann, N., and Schroder, K. (2014). Nox family NADPH oxidases: molecular mechanisms of activation. Free Radic. Biol. Med. 76: 208–226, https://doi.org/10.1016/j.freeradbiomed.2014.07.046.
Brigelius-Flohe, R. and Maiorino, M. (2013). Glutathione peroxidases. Biochim. Biophys. Acta 1830: 3289–3303, https://doi.org/10.1016/j.bbagen.2012.11.020.
Buck, T., Hack, C.T., Berg, D., Berg, U., Kunz, L., and Mayerhofer, A. (2019). The NADPH oxidase 4 is a major source of hydrogen peroxide in human granulosa-lutein and granulosa tumor cells. Sci. Rep. 9: 3585, https://doi.org/10.1038/s41598-019-40329-8.
Cannito, S., Novo, E., di Bonzo, L.V., Busletta, C., Colombatto, S., and Parola, M. (2010). Epithelial-mesenchymal transition: from molecular mechanisms, redox regulation to implications in human health and disease. Antioxid. Redox Signal. 12: 1383–1430, https://doi.org/10.1089/ars.2009.2737.
Castano, Z., San Juan, B.P., Spiegel, A., Pant, A., DeCristo, M.J., Laszewski, T., Ubellacker, J.M., Janssen, S.R., Dongre, A., Reinhardt, F., et al.. (2018). IL-1beta inflammatory response driven by primary breast cancer prevents metastasis-initiating cell colonization. Nat. Cell Biol. 20: 1084–1097, https://doi.org/10.1038/s41556-018-0173-5.
Chaffer, C.L., Brennan, J.P., Slavin, J.L., Blick, T., Thompson, E.W., and Williams, E.D. (2006). Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2. Cancer Res. 66: 11271–11278, https://doi.org/10.1158/0008-5472.can-06-2044.
Chaffer, C.L., Marjanovic, N.D., Lee, T., Bell, G., Kleer, C.G., Reinhardt, F., D’Alessio, A.C., Young, R.A., and Weinberg, R.A. (2013). Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell 154: 61–74, https://doi.org/10.1016/j.cell.2013.06.005.
Chen, B., Li, L., Li, M., and Wang, X. (2020). HIF1A expression correlates with increased tumor immune and stromal signatures and aggressive phenotypes in human cancers. Cell. Oncol. 43: 877–888, https://doi.org/10.1007/s13402-020-00534-4.
Chen, C.Y., Willard, D., and Rudolph, J. (2009). Redox regulation of SH2-domain-containing protein tyrosine phosphatases by two backdoor cysteines. Biochemistry 48: 1399–1409, https://doi.org/10.1021/bi801973z.
Chen, X., Comish, P.B., Tang, D., and Kang, R. (2021). Characteristics and biomarkers of ferroptosis. Front. Cell Dev. Biol. 9: 637162, https://doi.org/10.3389/fcell.2021.637162.
Chiarugi, P. and Cirri, P. (2003). Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction. Trends Biochem. Sci. 28: 509–514, https://doi.org/10.1016/s0968-0004(03)00174-9.
Conrad, M. and Pratt, D.A. (2019). The chemical basis of ferroptosis. Nat. Chem. Biol. 15: 1137–1147, https://doi.org/10.1038/s41589-019-0408-1.
Consortium, A.P.G. (2017). AACR project GENIE: powering precision medicine through an international consortium. Cancer Discov. 7: 818–831, https://doi.org/10.1158/2159-8290.CD-17-0151.
Cortot, A.B. and Janne, P.A. (2014). Molecular mechanisms of resistance in epidermal growth factor receptor-mutant lung adenocarcinomas. Eur. Respir. Rev. 23: 356–366, https://doi.org/10.1183/09059180.00004614.
Cozza, G., Rossetto, M., Bosello-Travain, V., Maiorino, M., Roveri, A., Toppo, S., Zaccarin, M., Zennaro, L., and Ursini, F. (2017). Glutathione peroxidase 4-catalyzed reduction of lipid hydroperoxides in membranes: the polar head of membrane phospholipids binds the enzyme and addresses the fatty acid hydroperoxide group toward the redox center. Free Radic. Biol. Med. 112: 1–11, https://doi.org/10.1016/j.freeradbiomed.2017.07.010.
Cross, D.A.E., Ashton, S.E., Ghiorghiu, S., Eberlein, C., Nebhan, C.A., Spitzler, P.J., Orme, J.P., Finlay, M.R.V., Ward, R.A., Mellor, M.J., et al.. (2014). AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov. 4: 1046–1061, https://doi.org/10.1158/2159-8290.cd-14-0337.
de Rezende, F.F., Martins Lima, A., Niland, S., Wittig, I., Heide, H., Schroder, K., and Eble, J.A. (2012). Integrin alpha7beta1 is a redox-regulated target of hydrogen peroxide in vascular smooth muscle cell adhesion. Free Radic. Biol. Med. 53: 521–531, https://doi.org/10.1016/j.freeradbiomed.2012.05.032.
Dean, M., Fojo, T., and Bates, S. (2005). Tumour stem cells and drug resistance. Nat. Rev. Cancer 5: 275–284, https://doi.org/10.1038/nrc1590.
Dillekås, H., Rogers, M.S., and Straume, O. (2019). Are 90% of deaths from cancer caused by metastases? Cancer Med. 8: 5574–5576.
Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., Patel, D.N., Bauer, A.J., Cantley, A.M., Yang, W.S., et al.. (2012). Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149: 1060–1072, https://doi.org/10.1016/j.cell.2012.03.042.
Dixon, S.J. and Stockwell, B.R. (2014). The role of iron and reactive oxygen species in cell death. Nat. Chem. Biol. 10: 9–17, https://doi.org/10.1038/nchembio.1416.
Doll, S., Freitas, F.P., Shah, R., Aldrovandi, M., da Silva, M.C., Ingold, I., Goya Grocin, A., Xavier da Silva, T.N., Panzilius, E., Scheel, C.H., et al.. (2019). FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575: 693–698, https://doi.org/10.1038/s41586-019-1707-0.
Drapela, S., Bouchal, J., Jolly, M.K., Culig, Z., and Soucek, K. (2020). ZEB1: a critical regulator of cell plasticity, DNA damage response, and therapy resistance. Front. Mol. Biosci. 7: 36, https://doi.org/10.3389/fmolb.2020.00036.
Druker, B.J., Guilhot, F., O’Brien, S.G., Gathmann, I., Kantarjian, H., Gattermann, N., Deininger, M.W., Silver, R.T., Goldman, J.M., Stone, R.M., et al.. (2006). Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N. Engl. J. Med. 355: 2408–2417, https://doi.org/10.1056/nejmoa062867.
Druker, B.J., Talpaz, M., Resta, D.J., Peng, B., Buchdunger, E., Ford, J.M., Lydon, N.B., Kantarjian, H., Capdeville, R., Ohno-Jones, S., et al.. (2001). Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344: 1031–1037, https://doi.org/10.1056/nejm200104053441401.
Eaton, J.K., Furst, L., Ruberto, R.A., Moosmayer, D., Hilpmann, A., Ryan, M.J., Zimmermann, K., Cai, L.L., Niehues, M., Badock, V., et al.. (2020). Selective covalent targeting of GPX4 using masked nitrile-oxide electrophiles. Nat. Chem. Biol. 16: 497–506, https://doi.org/10.1038/s41589-020-0501-5.
El Hout, M., Dos Santos, L., Hamaï, A., and Mehrpour, M. (2018). A promising new approach to cancer therapy: targeting iron metabolism in cancer stem cells. Semin. Cancer Biol. 53: 125–138, https://doi.org/10.1016/j.semcancer.2018.07.009.
Foret, M.K., Lincoln, R., Do Carmo, S., Cuello, A.C., and Cosa, G. (2020). Connecting the “Dots”: from free radical lipid autoxidation to cell pathology and disease. Chem. Rev. 120: 12757–12787, https://doi.org/10.1021/acs.chemrev.0c00761.
Friedmann Angeli, J.P., Schneider, M., Proneth, B., Tyurina, Y.Y., Tyurin, V.A., Hammond, V.J., Herbach, N., Aichler, M., Walch, A., Eggenhofer, E., et al.. (2014). Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16: 1180–1191, https://doi.org/10.1038/ncb3064.
Fukai, T. and Ushio-Fukai, M. (2011). Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid. Redox Signal. 15: 1583–1606, https://doi.org/10.1089/ars.2011.3999.
Gazdar, A.F. (2009). Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene 28: S24–S31, doi:https://doi.org/10.1038/onc.2009.198.
Gorrini, C., Harris, I.S., and Mak, T.W. (2013). Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 12: 931–947, https://doi.org/10.1038/nrd4002.
Hambright, W.S., Fonseca, R.S., Chen, L., Na, R., and Ran, Q. (2017). Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biol. 12: 8–17, https://doi.org/10.1016/j.redox.2017.01.021.
Hangauer, M.J., Viswanathan, V.S., Ryan, M.J., Bole, D., Eaton, J.K., Matov, A., Galeas, J., Dhruv, H.D., Berens, M.E., Schreiber, S.L., et al.. (2017). Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551: 247–250, https://doi.org/10.1038/nature24297.
Haslehurst, A.M., Koti, M., Dharsee, M., Nuin, P., Evans, K., Geraci, J., Childs, T., Chen, J., Li, J., Weberpals, J., et al.. (2012). EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer 12: 91, https://doi.org/10.1186/1471-2407-12-91.
Herbst, R., Morgensztern, D., and Boshoff, C. (2018). The biology and management of non-small cell lung cancer. Nature 553: 446–454, https://doi.org/10.1038/nature25183.
Herscovitch, M., Comb, W., Ennis, T., Coleman, K., Yong, S., Armstead, B., Kalaitzidis, D., Chandani, S., and Gilmore, T.D. (2008). Intermolecular disulfide bond formation in the NEMO dimer requires Cys54 and Cys347. Biochem. Biophys. Res. Commun. 367: 103–108, https://doi.org/10.1016/j.bbrc.2007.12.123.
Hinman, A., Holst, C.R., Latham, J.C., Bruegger, J.J., Ulas, G., McCusker, K.P., Amagata, A., Davis, D., Hoff, K.G., Kahn-Kirby, A.H., et al.. (2018). Vitamin E hydroquinone is an endogenous regulator of ferroptosis via redox control of 15-lipoxygenase. PLoS One 13: e0201369, https://doi.org/10.1371/journal.pone.0201369.
Hiom, S.C. (2015). Diagnosing cancer earlier: reviewing the evidence for improving cancer survival. Br. J. Cancer 112: S1–S5, doi:https://doi.org/10.1038/bjc.2015.23.
Hirano, T., Yasuda, H., Tani, T., Hamamoto, J., Oashi, A., Ishioka, K., Arai, D., Nukaga, S., Miyawaki, M., Kawada, I., et al.. (2015). In vitro modeling to determine mutation specificity of EGFR tyrosine kinase inhibitors against clinically relevant EGFR mutants in non-small-cell lung cancer. Oncotarget 6: 38789–38803, https://doi.org/10.18632/oncotarget.5887.
Ishikawa, F., Kaneko, E., Sugimoto, T., Ishijima, T., Wakamatsu, M., Yuasa, A., Sampei, R., Mori, K., Nose, K., and Shibanuma, M. (2014). A mitochondrial thioredoxin-sensitive mechanism regulates TGF-beta-mediated gene expression associated with epithelial-mesenchymal transition. Biochem. Biophys. Res. Commun. 443: 821–827, https://doi.org/10.1016/j.bbrc.2013.12.050.
Jaffer, O.A., Carter, A.B., Sanders, P.N., Dibbern, M.E., Winters, C.J., Murthy, S., Ryan, A.J., Rokita, A.G., Prasad, A.M., Zabner, J., et al.. (2015). Mitochondrial-targeted antioxidant therapy decreases transforming growth factor-beta-mediated collagen production in a murine asthma model. Am. J. Respir. Cell Mol. Biol. 52: 106–115, https://doi.org/10.1165/rcmb.2013-0519oc.
Jiang, J., Wang, K., Chen, Y., Chen, H., Nice, E.C., and Huang, C. (2017). Redox regulation in tumor cell epithelial-mesenchymal transition: molecular basis and therapeutic strategy. Signal. Transduct. Target. Ther. 2: 17036, https://doi.org/10.1038/sigtrans.2017.36.
Kagan, V.E., Mao, G., Qu, F., Angeli, J.P.F., Doll, S., Croix, C.S., Dar, H.H., Liu, B., Tyurin, V.A., Ritov, V.B., et al.. (2017). Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol. 13: 81–90, https://doi.org/10.1038/nchembio.2238.
Karar, J. and Maity, A. (2011). PI3K/AKT/mTOR pathway in angiogenesis. Front. Mol. Neurosci. 4: 51, https://doi.org/10.3389/fnmol.2011.00051.
Karisch, R., Fernandez, M., Taylor, P., Virtanen, C., St-Germain, J.R., Jin, L.L., Harris, I.S., Mori, J., Mak, T.W., Senis, Y.A., et al.. (2011). Global proteomic assessment of the classical protein-tyrosine phosphatome and “Redoxome”. Cell 146: 826–840, https://doi.org/10.1016/j.cell.2011.07.020.
Kempf, E., Rousseau, B., Besse, B., and Paz-Ares, L. (2016). KRAS oncogene in lung cancer: focus on molecularly driven clinical trials. Eur. Respir. Rev. 25: 71–76, https://doi.org/10.1183/16000617.0071-2015.
Kim, J.H., Bogner, P.N., Baek, S.H., Ramnath, N., Liang, P., Kim, H.R., Andrews, C., and Park, Y.M. (2008). Up-regulation of peroxiredoxin 1 in lung cancer and its implication as a prognostic and therapeutic target. Clin. Cancer Res. 14: 2326–2333, https://doi.org/10.1158/1078-0432.ccr-07-4457.
Kim, Y.J., Lee, W.S., Ip, C., Chae, H.Z., Park, E.M., and Park, Y.M. (2006). Prx1 suppresses radiation-induced c-Jun NH2-terminal kinase signaling in lung cancer cells through interaction with the glutathione S-transferase Pi/c-Jun NH2-terminal kinase complex. Cancer Res. 66: 7136–7142, https://doi.org/10.1158/0008-5472.can-05-4446.
Kurrey, N.K., Jalgaonkar, S.P., Joglekar, A.V., Ghanate, A.D., Chaskar, P.D., Doiphode, R.Y., and Bapat, S.A. (2009). Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cell. 27: 2059–2068, https://doi.org/10.1002/stem.154.
Kurutas, E.B. (2016). The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr. J. 15: 71, https://doi.org/10.1186/s12937-016-0186-5.
Kwon, T., Rho, J.K., Lee, J.C., Park, Y.H., Shin, H.J., Cho, S., Kang, Y.K., Kim, B.Y., Yoon, D.Y., and Yu, D.Y. (2015). An important role for peroxiredoxin II in survival of A549 lung cancer cells resistant to gefitinib. Exp. Mol. Med. 47: e165, https://doi.org/10.1038/emm.2015.24.
Labunskyy, V.M., Hatfield, D.L., and Gladyshev, V.N. (2014). Selenoproteins: molecular pathways and physiological roles. Physiol. Rev. 94: 739–777, https://doi.org/10.1152/physrev.00039.2013.
Lamouille, S.X. and J. Derynck, R. (2014). Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15: 178–196, https://doi.org/10.1038/nrm3758.
Lee, S.R., Yang, K.S., Kwon, J., Lee, C., Jeong, W., and Rhee, S.G. (2002). Reversible inactivation of the tumor suppressor PTEN by H2O2. J. Biol. Chem. 277: 20336–20342, https://doi.org/10.1074/jbc.m111899200.
Leonetti, A., Sharma, S., Minari, R., Perego, P., Giovannetti, E., and Tiseo, M. (2019). Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br. J. Cancer 121: 725–737, https://doi.org/10.1038/s41416-019-0573-8.
Li, J., Cao, F., Yin, H.-L., Huang, Z.-J., Lin, Z.-T., Mao, N., Sun, B., and Wang, G. (2020). Ferroptosis: past, present and future. Cell Death Dis. 11: 88, https://doi.org/10.1038/s41419-020-2298-2.
Li, M.Y., Lai, P.L., Chou, Y.T., Chi, A.P., Mi, Y.Z., Khoo, K.H., Chang, G.D., Wu, C.W., Meng, T.C., and Chen, G.C. (2015a). Protein tyrosine phosphatase PTPN3 inhibits lung cancer cell proliferation and migration by promoting EGFR endocytic degradation. Oncogene 34: 3791–3803, https://doi.org/10.1038/onc.2014.312.
Li, R., Jia, Z., and Trush, M.A. (2016). Defining ROS in biology and medicine. React. Oxyg. Species (Apex) 1: 9–21, https://doi.org/10.20455/ros.2016.803.
Li, W., Cao, L., Han, L., Xu, Q., and Ma, Q. (2015b). Superoxide dismutase promotes the epithelial-mesenchymal transition of pancreatic cancer cells via activation of the H2O2/ERK/NF-kappaB axis. Int. J. Oncol. 46: 2613–2620, https://doi.org/10.3892/ijo.2015.2938.
Liao, B.-C., Griesing, S., and Yang, J.C.-H. (2019). Second-line treatment of EGFR T790M-negative non-small cell lung cancer patients. Ther. Adv. Med. Oncol. 11: 1–16, https://doi.org/10.1177/1758835919890286.
Lim, S., Becker, A., Zimmer, A., Lu, J., Buettner, R., and Kirfel, J. (2013). SNAI1-mediated epithelial-mesenchymal transition confers chemoresistance and cellular plasticity by regulating genes involved in cell death and stem cell maintenance. PLoS One 8: e66558, https://doi.org/10.1371/journal.pone.0066558.
Liu, J., Kang, R., and Tang, D. (2021). The KRAS-G12C inhibitor: activity and resistance. Cancer Gene Ther., https://doi.org/10.1038/s41417-021-00383-9.
Liu, Y., Li, Q., Zhou, L., Xie, N., Nice, E.C., Zhang, H., Huang, C., and Lei, Y. (2016). Cancer drug resistance: redox resetting renders a way. Oncotarget 7: 42740–42761, https://doi.org/10.18632/oncotarget.8600.
Liu, Y.R., Liang, L., Zhao, J.M., Zhang, Y., Zhang, M., Zhong, W.L., Zhang, Q., Wei, J.J., Li, M., Yuan, J., et al.. (2017). Twist1 confers multidrug resistance in colon cancer through upregulation of ATP-binding cassette transporters. Oncotarget 8: 52901–52912, https://doi.org/10.18632/oncotarget.17548.
Maiti, A.K. (2012). Genetic determinants of oxidative stress-mediated sensitization of drug-resistant cancer cells. Int. J. Cancer 130: 1–9, https://doi.org/10.1002/ijc.26306.
Malouf, G.G., Taube, J.H., Lu, Y., Roysarkar, T., Panjarian, S., Estecio, M.R., Jelinek, J., Yamazaki, J., Raynal, N.J., Long, H., et al.. (2013). Architecture of epigenetic reprogramming following Twist1-mediated epithelial-mesenchymal transition. Genome Biol. 14: R144, https://doi.org/10.1186/gb-2013-14-12-r144.
Miller, E.W., Tulyathan, O., Isacoff, E.Y., and Chang, C.J. (2007). Molecular imaging of hydrogen peroxide produced for cell signaling. Nat. Chem. Biol. 3: 263–267, https://doi.org/10.1038/nchembio871.
Moreno, C. (2020). Standard treatment approaches for relapsed/refractory chronic lymphocytic leukemia after frontline chemoimmunotherapy. Hematology Am. Soc. Hematol. Educ. Program 2020: 33–40, https://doi.org/10.1182/hematology.2020000086.
Naumov, G.N., Townson, J.L., MacDonald, I.C., Wilson, S.M., Bramwell, V.H., Groom, A.C., and Chambers, A.F. (2003). Ineffectiveness of doxorubicin treatment on solitary dormant mammary carcinoma cells or late-developing metastases. Breast Cancer Res. Treat. 82: 199–206, https://doi.org/10.1023/b:brea.0000004377.12288.3c.
Neumann, J., Zeindl-Eberhart, E., Kirchner, T., and Jung, A. (2009). Frequency and type of KRAS mutations in routine diagnostic analysis of metastatic colorectal cancer. Pathol. Res. Pract. 205: 858–862, https://doi.org/10.1016/j.prp.2009.07.010.
Nicolussi, A., D’Inzeo, S., Capalbo, C., Giannini, G., and Coppa, A. (2017). The role of peroxiredoxins in cancer. Mol. Clin. Oncol. 6: 139–153, https://doi.org/10.3892/mco.2017.1129.
Overstreet, J.M., Samarakoon, R., Meldrum, K.K., and Higgins, P.J. (2014). Redox control of p53 in the transcriptional regulation of TGF-beta1 target genes through SMAD cooperativity. Cell. Signal. 26: 1427–1436, https://doi.org/10.1016/j.cellsig.2014.02.017.
Panieri, E. and Santoro, M.M. (2016). ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis. 7: e2253, https://doi.org/10.1038/cddis.2016.105.
Park, K., Tan, E.-H., O’Byrne, K., Zhang, L., Boyer, M., Mok, T., Hirsh, V., Yang, J.C.-H., Lee, K.H., Lu, S., et al.. (2016). Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): a phase 2B, open-label, randomised controlled trial. Lancet Oncol. 17: 577–589, https://doi.org/10.1016/s1470-2045(16)30033-x.
Park, M.W., Cha, H.W., Kim, J., Kim, J.H., Yang, H., Yoon, S., Boonpraman, N., Yi, S.S., Yoo, I.D., and Moon, J.S. (2021). NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer’s diseases. Redox Biol. 41: 101947, https://doi.org/10.1016/j.redox.2021.101947.
Paulsen, C.E. and Carroll, K.S. (2013). Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem. Rev. 113: 4633–4679, https://doi.org/10.1021/cr300163e.
Paulsen, C.E., Truong, T.H., Garcia, F.J., Homann, A., Gupta, V., Leonard, S.E., and Carroll, K.S. (2011). Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity. Nat. Chem. Biol. 8: 57–64, https://doi.org/10.1038/nchembio.736.
Phan, T.G. and Croucher, P.I. (2020). The dormant cancer cell life cycle. Nat. Rev. Cancer 20: 398–411, https://doi.org/10.1038/s41568-020-0263-0.
Pinnix, Z.K., Miller, L.D., Wang, W., D’Agostino, R.Jr., Kute, T., Willingham, M.C., Hatcher, H., Tesfay, L., Sui, G., Di, X., et al.. (2010). Ferroportin and iron regulation in breast cancer progression and prognosis. Sci. Transl. Med. 2: 43ra56, https://doi.org/10.1126/scisignal.3001127.
Pociask, D.A., Sime, P.J., and Brody, A.R. (2004). Asbestos-derived reactive oxygen species activate TGF-beta1. Lab. Invest. 84: 1013–1023, https://doi.org/10.1038/labinvest.3700109.
Polyak, K. and Weinberg, R.A. (2009). Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat. Rev. Cancer 9: 265–273, https://doi.org/10.1038/nrc2620.
Qin, S., Jiang, J., Lu, Y., Nice, E.C., Huang, C., Zhang, J., and He, W. (2020). Emerging role of tumor cell plasticity in modifying therapeutic response. Signal Transduct. Target. Ther. 5: 228, https://doi.org/10.1038/s41392-020-00313-5.
Reth, M. (2002). Hydrogen peroxide as second messenger in lymphocyte activation. Nat. Immunol. 3: 1129–1134, https://doi.org/10.1038/ni1202-1129.
Russo, A., Franchina, T., Rita Ricciardi, G.R., Picone, A., Ferraro, G., Zanghì, M., Toscano, G., Giordano, A., and Adamo, V. (2015). A decade of EGFR inhibition in EGFR-mutated non small cell lung cancer (NSCLC): old successes and future perspectives. Oncotarget 6: 26814–26825, https://doi.org/10.18632/oncotarget.4254.
Ryter, S.W., Kim, H.P., Hoetzel, A., Park, J.W., Nakahira, K., Wang, X., and Choi, A.M. (2007). Mechanisms of cell death in oxidative stress. Antioxid. Redox Signal. 9: 49–89, https://doi.org/10.1089/ars.2007.9.49.
Saxena, M., Stephens, M.A., Pathak, H., and Rangarajan, A. (2011). Transcription factors that mediate epithelial-mesenchymal transition lead to multidrug resistance by upregulating ABC transporters. Cell Death Dis. 2: e179, https://doi.org/10.1038/cddis.2011.61.
Schieber, M. and Chandel, N.S. (2014). ROS function in redox signaling and oxidative stress. Curr. Biol. 24: R453–R462, https://doi.org/10.1016/j.cub.2014.03.034.
Sever, R. and Brugge, J.S. (2015). Signal transduction in cancer. Cold Spring Harb. Perspect. Med. 5, https://doi.org/10.1101/cshperspect.a006098.
Shan, Z., Wei, Z., and Shaikh, Z.A. (2018). Suppression of ferroportin expression by cadmium stimulates proliferation, EMT, and migration in triple-negative breast cancer cells. Toxicol. Appl. Pharmacol. 356: 36–43, https://doi.org/10.1016/j.taap.2018.07.017.
Shvedova, A.A., Kisin, E.R., Murray, A.R., Kommineni, C., Castranova, V., Fadeel, B., and Kagan, V.E. (2008). Increased accumulation of neutrophils and decreased fibrosis in the lung of NADPH oxidase-deficient C57BL/6 mice exposed to carbon nanotubes. Toxicol. Appl. Pharmacol. 231: 235–240, https://doi.org/10.1016/j.taap.2008.04.018.
Skrypek, N., Goossens, S., De Smedt, E., Vandamme, N., and Berx, G. (2017). Epithelial-to-mesenchymal transition: epigenetic reprogramming driving cellular plasticity. Trends Genet. 33: 943–959, https://doi.org/10.1016/j.tig.2017.08.004.
Soria, J.-C., Ohe, Y., Vansteenkiste, J., Reungwetwattana, T., Chewaskulyong, B., Lee, K.H., Dechaphunkul, A., Imamura, F., Nogami, N., Kurata, T., et al.. (2018). Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N. Engl. J. Med. 378: 113–125, https://doi.org/10.1056/nejmoa1713137.
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., and Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71: 209–249, https://doi.org/10.3322/caac.21660.
Talukdar, S., Bhoopathi, P., Emdad, L., Das, S., Sarkar, D., and Fisher, P.B. (2019). Dormancy and cancer stem cells: an enigma for cancer therapeutic targeting. Adv. Cancer Res. 141: 43–84, https://doi.org/10.1016/bs.acr.2018.12.002.
Tam, W.L. and Weinberg, R.A. (2013). The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat. Med. 19: 1438–1449, https://doi.org/10.1038/nm.3336.
Tonks, N.K. (2005). Redox redux: revisiting PTPs and the control of cell signaling. Cell 121: 667–670, https://doi.org/10.1016/j.cell.2005.05.016.
Truong, T.H., Ung, P.M., Palde, P.B., Paulsen, C.E., Schlessinger, A., and Carroll, K.S. (2016). Molecular basis for redox activation of epidermal growth factor receptor kinase. Cell Chem. Biol. 23: 837–848, https://doi.org/10.1016/j.chembiol.2016.05.017.
Tumbrink, H.L., Heimsoeth, A., and Sos, M.L. (2021). The next tier of EGFR resistance mutations in lung cancer. Oncogene 40: 1–11, https://doi.org/10.1038/s41388-020-01510-w.
Waters, A.M. and Der, C.J. (2018). KRAS: the critical driver and therapeutic target for pancreatic cancer. Cold Spring Harb. Perspect. Med. 8, https://doi.org/10.1101/cshperspect.a031435.
Wee, P. and Wang, Z. (2017). Epidermal growth factor receptor cell proliferation signaling pathways. Cancers 9, https://doi.org/10.3390/cancers9050052.
Weidemann, A. and Johnson, R.S. (2008). Biology of HIF-1alpha. Cell Death Differ. 15: 621–627, https://doi.org/10.1038/cdd.2008.12.
Weidenfeld, K. and Barkan, D. (2018). EMT and stemness in tumor dormancy and outgrowth: are they intertwined processes? Front. Oncol. 8: 381, https://doi.org/10.3389/fonc.2018.00381.
Wong, H.S., Dighe, P.A., Mezera, V., Monternier, P.A., and Brand, M.D. (2017). Production of superoxide and hydrogen peroxide from specific mitochondrial sites under different bioenergetic conditions. J. Biol. Chem. 292: 16804–16809, https://doi.org/10.1074/jbc.r117.789271.
Woyach, J.A., Bojnik, E., Ruppert, A.S., Stefanovski, M.R., Goettl, V.M., Smucker, K.A., Smith, L.L., Dubovsky, J.A., Towns, W.H., MacMurray, J., et al.. (2014). Bruton’s tyrosine kinase (BTK) function is important to the development and expansion of chronic lymphocytic leukemia (CLL). Blood 123: 1207–1213, https://doi.org/10.1182/blood-2013-07-515361.
Wu, J., Liu, C., Tsui, S.T., and Liu, D. (2016a). Second-generation inhibitors of Bruton tyrosine kinase. J. Hematol. Oncol. 9: 80, https://doi.org/10.1186/s13045-016-0313-y.
Wu, J., Zhang, M., and Liu, D. (2016b). Acalabrutinib (ACP-196): a selective second-generation BTK inhibitor. J. Hematol. Oncol. 9: 21, https://doi.org/10.1186/s13045-016-0250-9.
Yang, J.C., Hirsh, V., Schuler, M., Yamamoto, N., O’Byrne, K.J., Mok, T.S., Zazulina, V., Shahidi, M., Lungershausen, J., Massey, D., et al.. (2013). Symptom control and quality of life in LUX-Lung 3: a phase III study of afatinib or cisplatin/pemetrexed in patients with advanced lung adenocarcinoma with EGFR mutations. J. Clin. Oncol. 31: 3342–3350, https://doi.org/10.1200/jco.2012.46.1764.
Yang, W.S. and Stockwell, B.R. (2008). Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol. 15: 234–245, https://doi.org/10.1016/j.chembiol.2008.02.010.
Yao, D., Dai, C., and Peng, S. (2011). Mechanism of the mesenchymal-epithelial transition and its relationship with metastatic tumor formation. Mol. Cancer Res. 9: 1608–1620, https://doi.org/10.1158/1541-7786.mcr-10-0568.
Zhang, K.-H., Tian, H.-Y., Gao, X., Lei, W.-W., Hu, Y., Wang, D.-M., Pan, X.-C., Yu, M.-L., Xu, G.-J., Zhao, F.-K., et al.. (2009). Ferritin heavy chain-mediated iron homeostasis and subsequent increased reactive oxygen species production are essential for epithelial-mesenchymal transition. Cancer Res. 69: 5340–5348, https://doi.org/10.1158/0008-5472.can-09-0112.
Zhang, W., Trachootham, D., Liu, J., Chen, G., Pelicano, H., Garcia-Prieto, C., Lu, W., Burger, J.A., Croce, C.M., Plunkett, W., et al.. (2012). Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nat. Cell Biol. 14: 276–286, https://doi.org/10.1038/ncb2432.
Zhitomirsky, B. and Assaraf, Y.G. (2016). Lysosomes as mediators of drug resistance in cancer. Drug Resist. Updat. 24: 23–33, https://doi.org/10.1016/j.drup.2015.11.004.
Zhong, L., Li, Y., Xiong, L., Wang, W., Wu, M., Yuan, T., Yang, W., Tian, C., Miao, Z., Wang, T., et al.. (2021). Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct. Target. Ther. 6: 201, https://doi.org/10.1038/s41392-021-00572-w.
Zhu, X., Chen, L., Liu, L., and Niu, X. (2019). EMT-mediated acquired EGFR-TKI resistance in NSCLC: mechanisms and strategies. Front. Oncol. 9: 1044, https://doi.org/10.3389/fonc.2019.01044.
فهرسة مساهمة: Keywords: cysteine modifications; ferroptosis; hydrogen peroxide signaling; oxidative posttranslational modifications; reactive oxygen species; targeted therapy
المشرفين على المادة: BBX060AN9V (Hydrogen Peroxide)
تواريخ الأحداث: Date Created: 20220115 Date Completed: 20220502 Latest Revision: 20220502
رمز التحديث: 20231215
DOI: 10.1515/hsz-2021-0341
PMID: 35032422
قاعدة البيانات: MEDLINE
الوصف
تدمد:1437-4315
DOI:10.1515/hsz-2021-0341