دورية أكاديمية

Size and macromolecule stabilizer-dependent performance of gold colloids in immuno-PCR.

التفاصيل البيبلوغرافية
العنوان: Size and macromolecule stabilizer-dependent performance of gold colloids in immuno-PCR.
المؤلفون: Tabatabaei MS; Department of Chemistry, University of Prince Edward Island, Prince Edward Island, Charlottetown, C1A 4P3, Canada., Islam R; Somru Bioscience, Charlottetown, PE, Canada., Ahmed M; Department of Chemistry, University of Prince Edward Island, Prince Edward Island, Charlottetown, C1A 4P3, Canada. marahmed@upei.ca.; Faculty of Sustainable Design Engineering, University of Prince Edward Island, Prince Edward Island, Charlottetown, C1A 4P3, Canada. marahmed@upei.ca.
المصدر: Analytical and bioanalytical chemistry [Anal Bioanal Chem] 2022 Mar; Vol. 414 (6), pp. 2205-2217. Date of Electronic Publication: 2022 Jan 16.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 101134327 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1618-2650 (Electronic) Linking ISSN: 16182642 NLM ISO Abbreviation: Anal Bioanal Chem Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Heidelberg : Springer-Verlag, 2002-
مواضيع طبية MeSH: Gold*/chemistry , Metal Nanoparticles*/chemistry, Gold Colloid ; Immunoassay ; Particle Size ; Polymerase Chain Reaction/methods
مستخلص: Gold nanoparticles (GNPs) are well-documented for their size and surface chemistry-dependent electronic and optical properties that are extensively utilized to develop highly sensitive immunoassays. GNP-based immuno-polymerase chain reaction (immuno-PCR) is especially interesting due to the facile loading of biomolecules on the surface of GNP probes and has been utilized to develop analyte-specific assays. In this study, the role of size and surface chemistry of GNPs is explored in detail to develop a highly sensitive and reproducible immuno-PCR assay for specific detection of biotinylated analytes. Our results indicate that smaller-sized gold nanoparticles outperform the larger ones in terms of their sensitivity in immuno-PCR assay and show superior loading of proteins and oligonucleotides on the surface of nanoparticles. Furthermore, the role of different macromolecular stabilizers (such as polyethylene glycol (PEG), bovine serum albumin (BSA), and PEGylated BSA) was compared to optimize the loading of biomolecules and to improve the signal-to-noise ratio of GNP probes. mPEG-BSA-functionalized GNP probes of 15 nm were found to be highly sensitive at low concentrations of analytes and significantly (~ 30 fold) improve the limit of detection of analytes in comparison with ELISA assay.
(© 2022. Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Assumpção ALFV. da Silva RC. Immuno-PCR in cancer and non-cancer related diseases: a review. Vet Q. 2016;36:63–70.
Chang L. Li J. Wang L. Immuno-PCR: an ultrasensitive immunoassay for biomolecular detection. Anal Chim Acta. 2016;910:12–24.
Dahiya B, Mehta PK. Detection of potential biomarkers associated with outrageous diseases and environmental pollutants by nanoparticle-based immuno-PCR assays. Anal Biochem. 2019;587:13444. https://doi.org/10.1016/j.ab.2019.113444 . (PMID: 10.1016/j.ab.2019.113444)
Yang GX, Zhuang HS, Chen HY, Ping XY, Bu D. A sensitive immunosorbent bio-barcode assay based on real-time immuno-PCR for detecting 3,4,3’,4’-tetrachlorobiphenyl. Anal Bioanal Chem. 2014;406:1693–700. (PMID: 10.1007/s00216-013-7583-9)
Gaudet D, Nilsson D, Lohr T, Sheedy C. Development of a real-time immuno-PCR assay for the quantification of 17β-estradiol in water. J Environ Sci Health-Part B Pestic Food Contam Agric Wastes. 2015;50:683–90. (PMID: 10.1080/03601234.2015.1048097)
Zhang X, Zhuang H. Development of an ultrasensitive PCR assay for polycyclic musk determination in fish. Food Addit Contam-Part A Chem Anal Control Expo Risk Assess. 2018;35:950–8. (PMID: 10.1080/19440049.2018.1429676)
Hendrickson ER, Truby TMH, Joerger RD, Majarian WR, Ebersole RC. High sensitivity multianalyte immunoassay using covalent DNA-labeled antibodies and polymerase chain reaction. Nucleic Acids Res. 1995;23:522–9. (PMID: 10.1093/nar/23.3.522)
Wang Y. Jin M. Chen G. Cui X. Zhang Y. Li M. Liao Y. Zhang X. Qin G. Yan F. Abd El-Aty AM. Wang J. Bio-barcode detection technology and its research applications: A review. J Adv Res. 2019;20:23–32.
Kim EY, Stanton J, Korber BTM, Krebs K, Bogdan D, Kunstman K, Wu S, Phair JP, Mirkin CA, Wolinsky SM. Detection of HIV-1 p24 Gag in plasma by a nanoparticle-based bio-barcode-amplification method. Nanomedicine. 2008;3:293–303. (PMID: 10.2217/17435889.3.3.293)
Gao L, Yang Q, Wu P, Li F. Recent advances in nanomaterial-enhanced enzyme-linked immunosorbent assays. Analyst. 2020;145:4069–78. (PMID: 10.1039/D0AN00597E)
Zhou W, Gao X, Liu D, Chen X. Gold nanoparticles for in vitro diagnostics. Chem Rev. 2015;115:10575–636. (PMID: 10.1021/acs.chemrev.5b00100)
Dahiya B. Sharma S. Khan, A. Kamra E. Mor P. Sheoran A. Sreenivas V. Varma-Basil M. Gupta KB. Gupta MC. Chaudhary D. Mehta, PK. Detection of mycobacterial CFP-10 (Rv3874) protein in tuberculosis patients by gold nanoparticle-based real-time immuno-PCR. Future Microbiol. 2020;15:601–12.
Yin HQ, Ji CF, Yang XQ, Wang R, Yang S, Zhang HQ, Zhang JG. An improved gold nanoparticle probe-based assay for HCV core antigen ultrasensitive detection. J Virol Methods. 2017;243:142–5. (PMID: 10.1016/j.jviromet.2017.02.007)
Ma Z, Zhuang H. An ultrasensitive biological probe enhanced RT-IPCR assay for detecting benzo[a]pyrene in environmental samples based on the specific polyclonal antibody. Acta Biochim Biophys Sin. 2018;50:381–90. (PMID: 10.1093/abbs/gmy020)
Xiansong W. Yi S. Shan J. Xuemet M. Yi Z. Combining gold nanoparticles with real-time immuno-PCR for analysis of HIV p24 antigens. 1st Int Conf Bioinforma Biomed Eng. 2007;1198–201.
Perez JW, Vargis EA, Russ PK, Haselton FR, Wright DW. Detection of respiratory syncytial virus using nanoparticle amplified immuno-polymerase chain reaction. Anal Biochem. 2011;410:141–8. (PMID: 10.1016/j.ab.2010.11.033)
Ding YZ, Liu YS, Zhou JH, Chen HT, Wei G, Ma LN, Zhang J. A highly sensitive detection for foot-and-mouth disease virus by gold nanoparticle improved immuno-PCR. Virol J. 2011;8:1–5. (PMID: 10.1186/1743-422X-8-1)
Yin HQ. Jia MX. Yang S. Jing PP. Wang R. Zhang JG. Development of a highly sensitive gold nanoparticle probe-based assay for bluetongue virus detection. J Virol Methods. 2012;183:45–8.
Stegurová L, Dráberová E, Bartos A, Dráber P, Řípová D, Dráber P. Gold nanoparticle-based immuno-PCR for detection of tau protein in cerebrospinal fluid. J Immunol Methods. 2014;406:137–42. (PMID: 10.1016/j.jim.2014.03.007)
Tabatabaei MS, Islam R, Ahmed M. Applications of gold nanoparticles in ELISA, PCR, and immuno-PCR assays: a review. Anal Chim Acta. 2021;1143:250–66. (PMID: 10.1016/j.aca.2020.08.030)
Georganopoulou DG, Chang L, Nam JM, Thaxton CS, Mufson EJ, Klein WL, Mirkin CA. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc Natl Acad Sci. 2005;102:2273–6. (PMID: 10.1073/pnas.0409336102)
Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology. Catal Nanotech Chem Rev. 2004;104:293–346.
Singh P. Bharti. Kumar R. Bhalla V. Gold nanoparticle triggered siloxane formation for polymerization based amplification in enzyme free visual immunoassay. Anal Chim Acta. 2019;1078:151–60.
Chivers CE, Koner AL, Lowe ED, Howarth M. How the biotin-streptavidin interaction was made even stronger: investigation via crystallography and a chimaeric tetramer. Biochem J. 2011;435:55–63. (PMID: 10.1042/BJ20101593)
Hermanson GT. Bioconjugate Reagents. Bioconjugate Tech. 2008:214–33.
Chen L, Wei H, Guo Y, Cui Z, Zhang Z, Zhang XE. Gold nanoparticle enhanced immuno-PCR for ultrasensitive detection of Hantaan virus nucleocapsid protein. J Immunol Methods. 2009;346:64–70. (PMID: 10.1016/j.jim.2009.05.007)
Kurdekar AD, Chunduri LAA, Manohar CS, Haleyurgirisetty MK, Hewlett IK, Venkataramaniah K. Streptavidin-conjugated gold nanoclusters as ultrasensitive fluorescent sensors for early diagnosis of HIV infection. Sci Adv. 2018;4:1–11. (PMID: 10.1126/sciadv.aar6280)
Quevedo PD, Behnke T, Resch-Genger U. Streptavidin conjugation and quantification—a method evaluation for nanoparticles. Anal Bioanal Chem. 2016;408:4133–49. (PMID: 10.1007/s00216-016-9510-3)
Nam JM, Stoeva SI, Mirkin CA. Bio-bar-code-based dna detection with pcr-like sensitivity. J Am Chem Soc. 2004;126:5932–3. (PMID: 10.1021/ja049384+)
Lin LK, Uzunoglu A, Stanciu LA. Aminolated and thiolated peg-covered gold nanoparticles with high stability and antiaggregation for lateral flow detection of bisphenol a. Small. 2018;14:1–10.
Harrison E, Nicol JR, Macias-Montero M, Burke GA, Coulter JA, Meenan BJ, Dixon D. A comparison of gold nanoparticle surface co-functionalization approaches using polyethylene glycol (PEG) and the effect on stability, non-specific protein adsorption and internalization. Mater Sci Eng C. 2016;62:710–8. (PMID: 10.1016/j.msec.2016.02.003)
Wu R, Peng H, Zhu JJ, Jiang LP, Liu J. Attaching DNA to gold nanoparticles with a protein corona. Front Chem. 2020;8:1–9. (PMID: 10.3389/fchem.2020.00001)
Dong YC, Hajfathalian M, Maidment PSN, Hsu JC, Naha PC, Si-Mohamed S, Breuilly M, Kim J, Chhour P, Douek P, Litt HI, Cormode DP. Effect of gold nanoparticle size on their properties as contrast agents for computed tomography. Sci Rep. 2019;9:1–13. https://doi.org/10.1038/s41598-019-50332-8 . (PMID: 10.1038/s41598-019-50332-8)
Bolaños K, Kogan MJ, Araya E. Capping gold nanoparticles with albumin to improve their biomedical properties. Int J Nanomed. 2019;14:6387–406. (PMID: 10.2147/IJN.S210992)
Hirayama K, Akashi S, Furuya M, Fukuhara K. Rapid confirmation and revision of the primary structure of bovine serum albumin by ESIMS and frit-FAB LC/MS. Biochem Biophys Res Commun. 1990;173:639–46. (PMID: 10.1016/S0006-291X(05)80083-X)
Dominguez-Medina S, Blankenburg J, Olson J, Landes CF, Link S. Adsorption of a protein monolayer via hydrophobic interactions prevents nanoparticle aggregation under harsh environmental conditions. ACS Sustain Chem Eng. 2013;1:833–42. (PMID: 10.1021/sc400042h)
Maddocks S. Jenkins R. Quantitative PCR: Things to consider. Understanding PCR. Elsevier, pp45–52; https://doi.org/10.1016/B978-0-12-802683-0.00004-6 ; 2017.
Maddocks S. Jenkins R. Carrying out Q-PCR. Understanding PCR. Elsevier, pp. 53–59. https://doi.org/10.1016/B978-0-12-802683-0.00005-8 ; 2017.
Vanzha E, Pylaev T, Khanadeev V, Konnova S, Fedorova V, Khlebtsov N. Gold nanoparticle-assisted polymerase chain reaction: effects of surface ligands, nanoparticle shape and material. RSC Adv. 2016;6:110146–54. (PMID: 10.1039/C6RA20472D)
Guan N. Li Y. Yang H. Hu P. Lu S. Ren H. Liu Z. Soo Park K. Zhou Y. Dual-functionalized gold nanoparticles probe based bio-barcode immuno-PCR for the detection of glyphosate. Food Chem. 2021;338:128133: https://doi.org/10.1016/j.foodchem.2020.128133 .
فهرسة مساهمة: Keywords: GNP-based immuno-PCR; High sensitivity; Macromolecule stabilizers; Reproducibility; Size-dependent loading of biomolecules
المشرفين على المادة: 0 (Gold Colloid)
7440-57-5 (Gold)
تواريخ الأحداث: Date Created: 20220116 Date Completed: 20220331 Latest Revision: 20220401
رمز التحديث: 20231215
DOI: 10.1007/s00216-021-03857-9
PMID: 35034157
قاعدة البيانات: MEDLINE
الوصف
تدمد:1618-2650
DOI:10.1007/s00216-021-03857-9